目的
- 本地部署deepseek环境
- 实现Edge网页上实时聊天
- 集成到VScode进行编程
- 搭建本地知识库
准备工作
本地环境:机械革命笔记本, window11系统
CPU | GPU | RAM |
---|---|---|
AMD Ryzen 7,3.2GHz | RTX 4060, 8G 显存 | 16GB |
本地大模型部署-- ollama
ollama 的安装
ollama官网 下载window版本的ollama,按照使用一般的安装方式,一路next即可,安装之后cmd中输入ollama,如下图所示,即可为安装成功:
考虑到之后下载的模型都比较大,建议更改模型的存放地址,在系统环境变量中添加OLLAMA_MODELS,其值设置成你希望的文件夹
ollama 模型下载
在ollama官网选择 deepseek-14b 和 bge-m3
在cmd中直接运行下面两个语句,等待下载完成即可
ollama run deepseek-r1:14b
ollama pull bge-m3
验证是否安装完成,使用 ollama list 查看是否已经存在 对应的模型
官网截图如下:
deepseek | bge-m3 |
---|---|
![]() | ![]() |
备注:可能本地网络速度不好,可以尝试连入手机热点进行下载 |
网页版使用本地模型
Edge 扩展插件官网 搜索 Page Assist, 点击“获取”
按照上述步骤安装插件后,就可以在浏览器中使用,点击“扩展"中的侧边显示
浏览器显示如下
我本地安装了8b和14b两个版本,示例中选择8b版本,打开联网功能后速度会慢一些,至此网页版的deepseek 助手安装完成。
集成到vscode
在vscode的扩展搜索 “contiune”,点击“install”
在出现的侧边栏,配置对话模型,选择ollama,选择Autodetect就会识别到本地安装的模型
结果如下:
‘ctrl+L’ 打开代码生成模式
同样contiune也支持各个模型的API Key
搭建本地知识库
在cherry studio官网 下载对应的window版本,安装之后,在设置的中找到模型设置,
可以选择本地和云上的API Key, 这里配置云上的硅基流动和本地的ollama,这里主要演示本地知识库,在 知识库一栏添加文件或者本地目录
思考的过程中基本上使用了MUST中的相关函数。
最新的cherry studio已经支持联网,通过github的账号直接登录 Tavily AI,获取API Key