前言
如果想深入了解的话建议先看看 算法概述
为了方便用来测试的数组一成不变,我们可以来一个随机数组
const arr = []
const arrLength = 11 //可以随机长度 Math.floor(Math.random() * 30) + 1
for (let i = 0; i < arrLength; i++) {
arr.push(Math.floor(Math.random() * 99) + 1)
}
console.log(arr, 'arr')
算法描述
希尔排序,也被称为递减增量排序,是简单插入排序的改进版本。
-
在插入排序中,如果待排序列中的某个元素,距离有序数列中待插入位置非常远,就需要比较很多次才可以到达插入位置,而希尔排序就是从这一点去优化的插入排序,它会优先比较距离较远的元素。
-
在插入排序中,一开始对比的增量(间隔)为1,而希尔排序是将这个间隔从数组长度的一半开始对比,然后减少一半的增量,再进行对比,直到降到1
-
希尔排序就是通过一轮轮的大增量插入排序增加数组的有序度,减少对比次数,从而减少算法的事件复杂度,它是第一个突破O(n2)的排序算法
动图演示
我们来分析一下上面的动图:
图中的数组是:[84,83,88,87,61,50,70,60,80,99]
仔细看,其实就是根据增量 N 去隐性的把一个数组分成 N 个数组,每个数组进行插入排序。如图:
- 第一轮增量为5,于是把数组分成
[84,50][83,70][88,60][87,80][61,99]
这5个数组 - 第二轮增量为2,于是数组分为
[84,88,61,70,80][83,87,50,60,99]
这2个数组 - 第三轮增量为1,即为最后一轮,这一轮就是整个数组参与插入排序
代码实现
//希尔
function shellSort(arr){
var len = arr.length;
for(let gap = Math.floor(len/2);gap>0;gap=Math.floor(gap/2)){
for(let i=gap;i<len;i++){
let j = i;
const current = arr[j];
while(j-gap>=0&&arr[j-gap]>current){
arr[j] = arr[j-gap]
j=j-gap
}
arr[j] = current
}
}
return arr
}
console.log(shellSort(arr),'shellSort arr')
优化思考
- 因为是基于插入排序,所以希尔排序的优化可以借鉴简单插入排序的优化方法处理,例如:希尔+二分插入排序,不清楚二分插入排序的前往 插入排序及优化
- 使用更高性能的递增序列(其实我也不了解,请了解的小伙伴留意告知一声)
算法分析
Shell算法的性能与所选取的分组长度序列有很大关系。想要弄清关键词比较次数和记录移动次数与增量选择之间的关系,并给出完整的数学分析,今仍然是数学难题。
有人通过大量的实验,给出了较好的结果:当n较大时,比较和移动的次数约在n^1.25
到(1.6n)^1.25
之间。
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
希尔排序在中等大小规模表现良好,对规模非常大的数据排序不是最优选择。专家们提倡,几乎任何排序工作在开始时都可以用希尔排序,若在实际使用中证明它不够快,再改成快速排序这样更高级的排序算法
复杂度
最坏时间复杂度:O(n²)
最好时间复杂度:O(n)
评价时间复杂度:O(n^1.3)
空间复杂度:O(1)
稳定性:不稳定