多种常见的AD滤波算法

本文介绍了多种常用的AD滤波算法,包括限幅滤波、中位置滤波、算术平均滤波、递推平均滤波等,适用于不同的抗干扰场景。在控制和判别算法中,选择合适的滤波方法能有效降低ADC采集的噪声,提高信号的准确性和稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多种常用AD滤波算法

最近一直在写一个控制和判别的算法程序,BOSS要求用两只HALL确定magnet的具体位置。问题的难度在于magnet的磁量是不确定的,其次是不能确定HALL的起始位置,有可能是在一只HALL的最近之处。还有就是采集两只HALL的AD值受到ADC基准电压的影响也可能是不准确的。但是,可以看出来,HALL的精度和ADC的采集精度是首要任务,因此需要采用一些滤波算法,尽量降低干扰。

1. 限幅滤波法

根据经验判断,确定两次采样允许的最大偏差值(设为A),每次检测到新值时判断,如果本次值与上次值之差<= A,则本次值有效,反则无效。适用范围: 能有效克服因偶然因素引起的脉冲干扰,但是无法抑制周期性的干扰平滑度差。关键的问题是如何根据经验设定最大偏差值。

2. 中位置滤波法

连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值。适用范围能有效克服因偶然因素引起的波动干扰,对温度、液位的变化缓慢的被测参数有良好的滤波效果。不过对流量、速度等快速变化的参数不宜。

3. 算术平均滤波

连续取N个采样值进行算术平均运算,N值较大时:信号平滑度较高,但灵敏度较低;N值较小时,信号平滑度低,但灵敏度较高。适用范围:适用于对一般具随机干扰的信号滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动。对于测量速度较慢或要求数据计算较快的实时控制不适用。

4. 递推平均滤波法(滑动平均滤波)

把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来对首的一次数据,把队列中得N个数据进行算术平均运算,就可以获得新的滤波结果。适用范围:对周期性干扰有良好的抑制作用,平滑度高,适用于高频振荡的系统。缺点是灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差,不易消除由于脉冲干扰所引起的采样值偏差,不适用于脉冲干扰比较严重的场合

5. 中位置平均滤波法(防脉冲干扰平均滤波)

相当于“中位置滤波法”+“算术平均滤波法”,连续采用N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。适用范围:融合两种算法的优点,对应偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。但是测量速度较慢, 浪费RAM和算术平均一样。

6. 限幅平均滤波

相对于“限幅滤波法”+“递推平均滤波”每次采样到的新数据先进行限幅处理,再送入队列进行递推平均滤波处理。适用范围:融合了两种滤波法的优点,对于偶然出现的脉冲性干扰,可消除由脉冲干扰所引起的采样值偏差。

7.一阶滞后滤波法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值