SpeechT5 模型

微软开源的 SpeechT5 语音模型,主要包括以下功能

  • 语音转文字:用于自动语音识别(ASR)。
  • 文字转语音:用于合成音频(TTS)。
  • 语音转语音:用于不同声音之间的转换或进行语音增强。

T5 网络包括,Encoder、Decoder、PreNet 和 PostNet。根据不同的模型,选用不同的 PreNet 和 PostNet。
在这里插入图片描述

TTS

T5 实现 TTS

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
from datasets import load_dataset
import torch
import soundfile as sf
from datasets import load_dataset

inputs = processor(text="hello, where are you from hello, where are you fromhello, where are you fromhello, where are you fromhello, where are you from?", return_tensors="pt")

# load xvector containing speaker's voice characteristics from a dataset
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[1234]["xvector"]).unsqueeze(0)

speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)

sf.write("speech.wav", speech.numpy(), samplerate=16000)

from IPython.display import Audio

Audio("./speech.wav")

ASR

T5 实现 ASR

import torch
import soundfile as sf
from transformers import SpeechT5Processor, SpeechT5ForSpeechToText

# Load the SpeechT5 processor and model
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_asr")
model = SpeechT5ForSpeechToText.from_pretrained("microsoft/speecht5_asr")

def transcribe_audio(file_path):
    # Load audio file
    speech, sampling_rate = sf.read(file_path)
    
    # Ensure the audio is in the right format
    if sampling_rate != 16000:
        raise ValueError("The model expects 16kHz audio sampling rate")
    
    # Preprocess the audio for the model
    inputs = processor(audio=speech, sampling_rate=sampling_rate, return_tensors="pt")

    predicted_ids = model.generate(**inputs, max_length=100)

    
    # Decode the logits to text
    transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
    return transcription[0]

# Example usage
file_path = "speech.wav"  # Replace with your file path
transcription = transcribe_audio(file_path)
print("Transcription:", transcription)

音频处理

音频是由 Wav 存储的,Wav 包括采样频率和深度进行存储,在音频数据传入模型之前,数据通过 Mel-spectrogram 进行特征抽取。可以通过以下代码生成 Mel-spectrogram。

import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np

# Load an example audio file
audio_file_path = 'speech.wav'
y, sr = librosa.load(audio_file_path, sr=16000)

# Compute Mel-spectrogram
mel_spectrogram = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)

# Convert to log scale (dB)
log_mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)

# Plot the Mel-spectrogram
plt.figure(figsize=(10, 4))
librosa.display.specshow(log_mel_spectrogram, sr=sr, x_axis='time', y_axis='mel')
plt.colorbar(format='%+2.0f dB')
plt.title('Mel-spectrogram')
plt.tight_layout()
plt.show()

在这里插入图片描述
每个像素作为数据输入 Model。

总结

SpeechT5 是一个比较强大的模型,可以文字转音频或者音频转文字,SpeechT5 目前只支持英文。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值