【Matlab群体智能算法第六期】基于Sine混沌映射的SPSO算法(含完整matlab代码)

文章介绍了Sine混沌映射原理及其在PSO算法中的应用,通过MATLAB代码展示了如何结合Sine映射进行种群初始化。实验结果显示,Sine混沌映射能提高初始解质量和收敛速度,但需配合种群更新策略以增强算法的稳定性和改进质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0.引言

        在前几期中作者分别对粒子群算法的种群初始化及种群更新等方向改进策略进行讲解,并将改进后粒子群算法的寻优能力进行测试。通过反馈发现较多粉丝对种群初始化方向中的混沌映射策略较为感兴趣,因此该期主要对另一种混沌映射策略,即Sine混沌映射及其改进版本进行详细讲解。

1.Sine混沌映射原理

        混沌映射的原理是首先利用混沌映射规则将优化变量映射到混沌变量的区间值空间,其次利用混沌变量特性进行寻优,最后将优化解线性转化为优化空间。

        Sine混沌映射具有结构简单,效率高等特点。Sine混沌映射公式如下:

x_{k+1}=asin(\pi x_{k}), a\epsilon [0,1]

        根据上述Sine混沌映射公式,参考matlab代码如下:

%sine混沌映射
function best_x=sine_int(D,Lb,Ub)
x_sine=rand();
for L=2:D
    a=rand();%随机参数
    x_sine(1,L)=a*sin(pi*x_sine(1,L-1));    
end
    %sine混沌序列映射至解空间
    best_x=Lb+x_sine.*(Ub-Lb);
end

2.基于Sine混沌映射策略的SPSO粒子群优化算法

        文章第一节中已经对Sine混沌映射策略的原理及matlab代码进行了相应的讲解及复现,现将Sine混沌映射策略与传统PSO算法相结合,并基于相应目标函数进行求解,以验证改进PSO算法的可行性,具体matlab代码如下:

%% 基于Sine混沌映射的改进粒子群算法主程序
clc;
clear all;
close all
%% 算法基本参数设置
c1=2; %学习因子1
c2=2;%学习因子2
w=0.7;%惯性权重
MaxDT=500;%最大迭代次数
D=3;%搜索空间维数(未知数个数)
N=30;%初始化群体个体数目
Lb=[-100,-100,-100];%种群解的下限
Ub=[100,100,100];%种群解的上限
Vmax=[1,1,1];%速度上限
Vmin=[-1,-1,-1];%速度下限
a=0.5;%Tent混沌系数,0~1之间
Best_f=[];pop=[];
%% 基于Sine混沌映射的种群初始化
for L=1:N
    pop(L,:)=sine_int(D,Lb,Ub);
    Best_f(1,L)=fitness_obl(pop(L,:));
end
V=rand(N,D);
%计算各个粒子的适应度值并初始化Pi和Pg
[fitnessgbest bestindex]=min(Best_f);
gbest=pop(bestindex,:);
pbest=pop;
fitnesspbest=Best_f;
 
%% 粒子群算法更新迭代部分
for i=1:MaxDT
    for j=1:N
        %种群更新
        V(j,:)=w*V(j,:)+c1*rand*(pbest(j,:)-pop(j,:))+c2*rand*(gbest-pop(j,:));
        %更新速度边界检查
        I=V(j,:)<Vmin;
        V(j,I)=Vmin(I);
        U=V(j,:)>Vmax;
        V(j,U)=Vmax(U);
        pop(j,:)=pop(j,:)+V(j,:);
        %粒子边界检查
        PI=pop(j,:)<Lb;
        pop(j,PI)=Lb(PI);
        PU=pop(j,:)>Ub;
        pop(j,PU)=Ub(PU);
        %计算更新后种群的适应度函数值     
        Best_f(j)=fitness_obl(pop(j,:));
  
       %个体极值更新
       if Best_f(j)<fitnesspbest(j)
            pbest(j,:)=pop(j,:);
            fitnesspbest(j)=Best_f(j);
       end
 
       %全局极值更新
       if Best_f(j)<fitnessgbest
           gbest=pop(j,:);
           fitnessgbest=Best_f(j);  
       end
       
    end
   %记录粒子全局最优解
   Fgbest(i)=fitnessgbest;
   
end
%% 结果可视化
figure
plot(Fgbest)
title(['适应度曲线 ' '终止次数=' num2str(MaxDT)]);
xlabel('进化代数');
ylabel('适应度')

        为验证改进后算法的求解效果,本文将采用Sine策略改进前后及原始PSO算法寻优结果进行对比,采用测试函数与第1-5期测试函数相同,此处不再赘述。

        根据上述目标函数,基于Sine改进的PSO算法适应度曲线如下:

图1 基于Sine混沌映射策略的PSO算法迭代曲线

图2 标准粒子群算法适应度曲线

        根据上述对比可知,采用SIne混沌映射策略后,能够获得更好的初始解,解的质量更高,有助于PSO算法更快的实现收敛,并获取更好的求解精度。为了验证基于SIne混沌映射粒子群算法的求解稳定性,分别对该目标函数求解10次,并分别记录10次中目标函数最小值、最大值及均值。运行结果如下所示:

运行次数标准粒子群算法基于Sine映射改进后
10.08317.43E-31
20.05475.55E-32
30.02942.23E-29
40.01191.23E-32
50.04773.18E-29
60.03991.39E-31
70.04599.76E-29
80.02352.13E-29
90.00435.18E-31
100.05327.53E-29
均值0.039362.49776E-29
最小值0.00431.2326E-32
最大值0.08319.76339E-29

        根据上述对比结果可知,采用Sine混沌映射策略后,能够在该目标函数下实现较好的求解效果,且算法求解的稳定性较好,在10次求解过程中,基于Sine混沌映射策略的PSO算法适应度函数的最小值、均值及最大值,均优于传统粒子群优化算法。

3.总结

        在上述计算过程中,尽管采用Sine混沌映射策略能够较好的提升PSO算法的求解精度,但混沌映射等针对粒子群算法种群初始化的改进策略,仅在算法初始化阶段进行,在后续种群更新迭代等过程中并不会继续参与。因此,尽管该种方式能够一定程度上改进种群解的质量,提升收敛速度。但也可能出现因为某次随机初始种群解的质量较差而导致改进效果不佳的问题。因此,该改进策略一般伴随种群更新改进等方式结合使用,以提升算法改进的稳定性及改进质量。

        本文在写作过程中Sine混沌映射原理参照下述文献进行,在此对该文献作者进行感谢,若有侵权,请联系我进行修改删除。参考文献如下:

[1]刘磊;姜博文;周恒扬;浦晨玮;钱鹏飞;刘波. 融合改进Sine混沌映射的新型粒子群优化算法 [J]. 西安交通大学学报, 2023, 57 (08): 182-193.

往期传送门:

【Matlab群体智能算法第一期】粒子群算法及其变体(一)_粒子群算法示意图-CSDN博客

【Matlab群体智能算法第二期】基于反向学习的改进粒子群算法(含matlab代码)-CSDN博客

【Matlab群体智能算法第三期】基于Tent混沌映射的TPSO算法(含完整matlab代码)-CSDN博客

【Matlab群体智能算法第四期】基于Tent混沌映射、自适应t分布和动态选择策略的TDPSO算法(含完整matlab代码)-CSDN博客

【Matlab群体智能算法第五期】基于改进Tent混沌映射的ITPSO算法(含完整matlab代码)-CSDN博客

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值