freezing model parameters in pytorch;pytorch中固定模型参数的方法

这篇博客详细介绍了在PyTorch框架下如何固定模型的参数,以便在训练过程中只更新部分网络层。通过设置requires_grad标志为False,可以阻止特定参数在反向传播时进行梯度计算,从而实现模型的微调或特征提取。此外,还讨论了在多GPU训练环境下,使用DataParallel和DistributedDataParallel时如何正确地冻结模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值