LeetCode-动态规划-072-编辑距离

本文介绍了编辑距离算法的动态规划解决方案,通过底向上计算最少编辑操作数,包括插入、删除和替换。通过实例和代码展示了如何用C++实现LeetCode中的编辑距离问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 题目

72. 编辑距离

动态规划参考:算法-动态规划-《算法导论3rd-P215》_hclbeloved的博客-CSDN博客

2 分析

(1)使用从底向上的动态规划(此时是需要base case的);

(2)确定dp的含义:dp[i][j]表示字符串A的前i个字母到字符串B的前j个字母间的最少编辑距离。

(3)base case:dp[i][0] = i, dp[0][j] = j

(4)状态转移方程:

        (4.1)已知dp[i][j-1],则在A字符串的前i个字符后面插入B[j]就可以变成B字符串的前j个字符,即dp[i][j] = dp[i][j-1] + 1;

        (4.2)已知dp[i-1][j],则删除A字符串中的A[i],就可以变成B字符串的前j个字符,即dp[i][j] = dp[i-1][j] + 1;

        (4.3)已知dp[i-1][j-1],若A[i] == B[j],则 dp[i][j] = dp[i-1][j-1],也就是不用任何额外的操作;若A[i] != B[j],则需要一次额外的替换操作,将B[j]赋值给A[j]即可,即:dp[i][j] = dp[i-1][j-1] + 1;

3 代码实现

//https://leetcode-cn.com/problems/edit-distance/solution/bian-ji-ju-chi-by-leetcode-solution/
class Solution {
public:
    int minDistance(string word1, string word2) {
        int n = word1.length();
        int m = word2.length();

        // 有一个字符串为空串
        if (n * m == 0) return n + m;

        // DP 数组
        int dp[n + 1][m + 1];

        // 边界状态初始化
        for (int i = 0; i <= n; i++) 
        {
            dp[i][0] = i;
        }
        for (int j = 0; j <= m; j++) 
        {
            dp[0][j] = j;
        }

        // 计算所有 DP 值
        for (int i = 1; i <= n; i++) 
        {
            for (int j = 1; j <= m; j++) 
            {
                if (word1[i - 1] == word2[j - 1]) 
                    dp[i][j] = std::min(dp[i-1][j-1], std::min(1+dp[i-1][j], 1+dp[i][j-1]));
                else
                    dp[i][j] = std::min(1+dp[i-1][j-1], std::min(1+dp[i-1][j], 1+dp[i][j-1]));
            }
        }
        return dp[n][m];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值