cartographer从入门到精通(一):cartographer介绍

一、cartographer重要文档

有关cartographer的资料有2个比较重要的网站,我们的介绍也是基于这两个网站,其中会加入自己的一些理解,后续也有一些对代码的修改,来实现我们想完善的功能。

1-Cartographer 2-Cartographer ROS 第1个是Cartographer的核心,它会编译成一个库文件供他人使用 第2个是作者写了个ros包来调用Cartographer的核心库来实现建图、导航的便捷展示。

二、Cartographer的安装

Cartographer是一个SLAM系统,它提供了2D和3D激光的建图功能,并支持多种平台和多种传感器配置。

技术概述
  • Cartographer的架构图 

我们可以看到白色框出来的三个区域,分别是

  • Input Sensor Data(数据输入模块)
  • Local SLAM(局部SLAM模块)
  • Global SLAM (background thread)(全局SLAM模块)

下面我们分别介绍一下这几个模块

Input Sensor Data(数据输入模块)

数据输入模块可以接收激光雷达(Range Data)、电机编码器(Odometry Pose)、陀螺仪(IMU Data)、还有固定坐标系位姿(Fixed Frame Pose)数据,这里的固定坐标系位姿(Fixed Frame Pose)数据在代码中有注释提到是GPS数据,其实也可以是其他类似GPS信号的数据源,顾名思义只要是固定坐标系下的位姿数据就可以。 如激光雷达: 

 如电机 

 如陀螺仪 

以上品牌只作为参考,具体应用需要适配合适的传感器。

点击cartographer从入门到精通(一):cartographer介绍——古月居可查看全文

要从入门精通cartographer,首先需要理解其原理和工作流程。Cartographer个用于SLAM(Simultaneous Localization and Mapping,同时定位与地图构建)的开源库,能够将传感器数据转化为精确的地图。 入门阶段,需要了解SLAM的基本概念和原理。SLAM是指在未知环境中,通过感知传感器数据来同时估计机器人的运动轨迹和环境的地图。掌握SLAM的核心原理,包括前端、后端、回环检测等模块的作用和相互关系,能够帮助我们理解Cartographer的工作方式。 接下来,在学习Cartographer源码的过程中,需要逐行详解其实现细节。首先,可以通过阅读Cartographer的文档和官方教程来了解其整体结构和基本用法。然后,需要仔细研究Cartographer的核心算法和数据结构,包括激光雷达数据的处理、位姿变换的估计、地图的构建与更新等。可以针对每个模块和函数进行调试和分析,逐行深入源码。 在深入源码的过程中,可以利用调试工具、打印输出等方法来观察程序的执行过程和数据变化。同时,可以结合论文和研究成果来深入理解算法和数据处理的原理。通过对每个细节进行分析和思考,能够更好地理解Cartographer的实现机制和运行逻辑。 在精通Cartographer之前,还需要多进行实践和调试。可以尝试使用不同的传感器数据和场景来测试Cartographer的性能和鲁棒性。通过实际应用中遇到的问题和挑战,能够进步加深对Cartographer的理解和掌握。 总之,要从入门精通Cartographer,需要系统学习SLAM的原理和基本概念,并逐行深入研究Cartographer的源码和实现细节。通过理论学习和实践应用相结合,能够全面掌握Cartographer的工作原理和使用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值