墙材码垛机器人目标检测

在实际应用中,我遇到了一些技术难题。首先,由于墙体砌筑时砖块堆叠紧密,砖块之间的光反射度差异较大,而上下层的遮挡也容易导致光线误判。此外,生产线上的灰尘颗粒附着在砖块表面或输送带上,进一步增加了噪声干扰,导致模型的准确性下降。

为了解决这些问题,博主决定在YOLOv8网络的基础上进行改进。博主采取了以下三种改进措施:

加权双向特征金字塔网络(WBiFPN)结构:博主重新架构了YOLOv8网络,引入了WBiFPN结构。这种结构结合了深层次的语义信息和浅层纹理特征,使得模型在面对复杂堆砌情况时,能够更好地捕捉不同尺度砖块的特征,从而提高准确性。

空间金字塔池化(SPPF)机制:为了在保持较高计算速率的同时扩展感受野,博主引入了SPPF机制。这样不仅能够帮助捕捉砖块的边缘细节,还能提升模型在处理复杂情况时的整体准确性。

小目标检测头:为了提高模型对不同大小砖块的检测能力,博主增加了小目标检测头,并调整了锚框的尺寸和特征图的分辨率。这使得模型在多尺度目标检测中更加精确。

数据集准备

这里博主就比较简单粗暴的,从网络上爬取了大量的砖头石快作为数据集.
在国内常用的墙体砖块中,常见的两类主要是混凝土砖和红砖(土砖)。

混凝土砖:混凝土砖通常是用水泥、砂石、粉煤灰等原料混合后,通过高压成型、蒸养固化的方式制作而成。其表面通常较为平整,纹理简单,重量较重,耐久性较好,常用于高层建筑、基础设施等施工中。混凝土砖有较好的抗压强度,并且不容易受环境影响而变化。

红砖(土砖):红砖主要是以粘土为主要原料,经过高温烧制而成,因此具有较强的耐火性和良好的保温隔热性。红砖的外形种类较多,包括标准砖、孔砖等,虽然形状不同,但由于烧制工艺和材料一致,因此都归类为红砖大类。红砖在许多地方的低层建筑、民居中广泛使用,价格相对较为便宜,施工方便。

image.png

 将搜罗到的墙砖图像使用LabelImg进行目标框的标注,标注结果如图7所示,主要将图像中墙砖目标使用矩形框完整框出即可,然后对此框标注目标类别进行备注,方便输入。最终生成标注文件,每个图像对应一个标注文件,通常标注文件名称与图像名称相同,以确保图像和标注的一一对应。

image.png

 标注文件为txt格式,每行表示一个目标物体,采用一组数字对该物体的类别和标注框进行记录。各数字间使用空格分隔,第一个数字表示目标物体的类别,第二至第五个数字分别表示目标物体标注框的x、y坐标和矩形框的宽度和高度,以此在图像中唯一确定标注框的准确位置。

image.png

 最后将数据集按照比例划分为训练集和测试集,分别在算法的不同周期作为数据基础。整体数据集结构采用标准YOLO数据集文件结构进行组织,详细组织结构如图9示例所示。在训练集、测试集和验证集中均包含图像和标注两个文件夹,图像文件夹中包含原始图像,标注文件夹中包含图像对应的标注文件。按照这种结构方便YOLO算法进行数据集的读取和数据处理。

image.png

模型修改部分

BIFPN结构

双向特征金字塔是一种改进的特征金字塔结构,不同于PANet,双向特征金字塔可以实现双向融合,实现多维度的特征信息的融合,最大的不同就是能够在颈部网络中通过跳跃连接来融合浅层网络的特征。

image.png

 其中,单进项的结点对特征的融合没有太大的贡献,所以,单进项的结点被删除了。然后在原输入结点和输出结点之间增加一条边线,目的是在一个模块中整合自上而下和自下而上的路径,以实现更高层次的特征融合,同时又能支持更高层次的特征融合,同时又不需要任何成本。 改进后的YOLOV8网络结构图示如图所示,对特征融合阶段网络重新整理,增加了增加了特征融合的跳跃连接。双向特征金字塔对不同权重的信息,有不同的考量,权重大的特征,融合后特征更明显,权重小的特征,融合后特征不明显。

注意力机制

在墙砖的数据集中,可能存在一些比较小的墙砖或者是墙砖上面的一些小的目标,在密集的场景当中往往会被忽略掉,而CBAM注意力机制就能注意到这些小目标,然后再加以凸显。它通过对通道的权重调整实现突出小目标的特征,让模型可以关注和识别小目标的部分特征;同时利用空间注意力模块来注重其空间位置,提高小目标特征图的空间位置的响应强度,然后让模型能够注意到这些小目标,并提高模型检测的小目标的能力。 在实际的墙砖检测应用中,图像可能会受到光照变化、拍摄角度不同等因素的影响,这会增加密集目标检测的难度。CBAM 注意力机制可以提高模型的鲁棒性。通道注意力模块能够自适应地调整不同通道的权重,减少光照变化对特征的影响。空间注意力模块则可以在不同的拍摄角度下,依然准确地定位目标区域。这样,模型在面对各种复杂的实际场景时,都能够保持较好的检测效果

点击链接墙材码垛机器人目标检测阅读全文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值