在机器人领域的发展进程中,如何让机器人快速且有效地学习人类技能一直是研究的核心方向之一。
那么,我们今天的前沿技术主要是来讲一个叫MOTION TRACKS的东西。它的研究结果来自清华大学交叉信息院等机构的研究团队,出了论文,发表于机器人与自动化学术盛会 (ICRA 2024),简单来说,它为解决小样本模仿学习中的人类技能向机器人转移问题提供了创新性的思路。
项目主页:Motion Tracks: A Unified Representation for Human-Robot Transfer in Few-Shot Imitation Learning
我们今天就来看看它到底有什么用,为什么这么设计,以及它的核心方法是什么。
一、为什么会有它?
这主要和机器人模仿学习的困境与突破需求的有关系。
1、传统模仿学习的痛点
模仿学习(IL)本是赋予机器人技能的有力手段,通过人类演示,机器人能够学习执行各种任务。然而,传统的模仿学习在数据收集阶段就遭遇了重大阻碍。以往,为了训练机器人策略,往往需要通过虚拟现实设备或木偶操作界面进行远程操作演示,而且常常需要成百甚至上万次的演示才能让机器人达到理想的性能。
这一过程不仅耗时费力,对操作人员来说也是相当大的负担,每次数据收集前都需要大量练习,并且部分设备是机器人特定的,不具备普遍可及性。
2、人类视频数据的潜力与挑战
既然远程操作收集数据如此困难,那么从人类视频数据中学习似乎是一个极具潜力的替代方案。毕竟,人类视频数据更容易大规模收集,现有的数据集已经能提供数千小时的演示。
但事情并没有那么简单,这些人类视频缺乏机器人动作标签,而这恰恰是训练模仿学习策略所必需的信息。这就好比你拿到了一本没有注释的武功秘籍,机器人很难从中准确地学习到该如何行动,这成为了将人类视频知识转移到机器人策略上的巨大挑战。
所以,找到一种方法来填补人类视频与机器人行动之间的鸿沟,成为了亟待解决的关键问题。
二、核心问题:如何实现小样本下人类技能向机器人的有效转移
这个工作旨在解决的核心问题就是,在小样本模仿学习场景下,实现从人类视频数据到机器人执行任务的有效技能转移。
具体而言,就是要找到一种通用的表示方法,能够将人类在视频中的动作转化为机器人可以理解和执行的指令,并且只需要少量的人类视频以及有限的机器人演示,就能让机器人成功完成任务,同时还要保证机器人能够将学到的技能泛化到新的场景中。
三、为什么选择这样的研究思路
总结了一下,可以分成两点:
1、统一跨体动作空间的优势
研究团队认为,要解决上述问题,关键在于构建一个统一的跨体动作空间。因为人类和机器人的身体结构与运动方式存在差异,如果能找到一种通用的动作表示,就可以打破这种隔阂,使得机器人能够基于人类视频进行学习。
就好像不同语言的人通过一种通用语言(如英语)来交流一样,这个统一的动作空间就是人类与机器人之间交流动作的 “通用语言”。这样一来,机器人就有可能利用丰富的人类视频资源,并且结合少量自身的演示数据,实现高效的学习。
点击链接Motion Tracks能实现跨载体吗?阅读全文