线性回归-scikit-learn

本文介绍了如何使用scikit-learn库实现线性回归,通过一个实例展示了从导入数据到训练模型的过程,并解释了回归系数的意义,以及如何查看残差平方和和R2值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归即是我们希望能通过学习来得到一个各属性线性组合的函数,函数的各项系数表明了该属性对于最后结果的重要性,可以用以下公式表达:

yˆ(ω,x)=ω1x1+
### 使用 Scikit-learn 构建和应用线性回归模型 以下是关于如何使用 `scikit-learn` 库来实现线性回归模型的详细说明,包括数据准备、模型训练、预测以及参数解释。 #### 数据准备 为了构建线性回归模型,首先需要准备好输入特征矩阵 \(X\) 和目标变量向量 \(y\)。通常情况下,可以利用 NumPy 或 Pandas 来处理这些数据[^1]。 ```python import numpy as np from sklearn.model_selection import train_test_split # 创建样本数据集 X (特征) 和 y (标签) X = np.array([[1], [2], [3], [4], [5]]) y = np.array([2, 4, 6, 8, 10]) # 将数据划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 模型初始化与训练 在 `scikit-learn` 中,可以通过导入 `LinearRegression` 类并实例化对象来进行模型创建。随后调用 `.fit()` 方法即可完成模型训练过程[^2]。 ```python from sklearn.linear_model import LinearRegression # 初始化线性回归模型 model = LinearRegression() # 训练模型 model.fit(X_train, y_train) ``` #### 预测与评估 经过训练后的模型能够用于新数据上的预测操作。同时还可以计算一些指标比如均方误差 MSE 或决定系数 R² 来衡量模型性能。 ```python from sklearn.metrics import mean_squared_error, r2_score # 对测试集进行预测 predictions = model.predict(X_test) # 输出预测结果 print(f'Predictions: {predictions}') # 计算MSE和R²得分 mse = mean_squared_error(y_test, predictions) r2 = r2_score(y_test, predictions) print(f'Mean Squared Error: {mse}') print(f'R-squared Score: {r2}') ``` #### 参数说明 - **fit_intercept**: 布尔值,默认为 True。如果设置为 False,则表示强制不拟合截距项。 - **normalize**: 已弃用,在未来版本中会被移除。建议手动标准化数据而不是依赖此选项。 - **copy_X**: 默认为 True,意味着会复制传入的数据以防被修改;当设为 False 并且 fit_intercept=False 的时候可能会节省内存开销。 - **n_jobs**: 整数或者 None,默认为 None。指定用于计算的最大作业数量。仅适用于大规模问题中的多核加速场景。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值