- 博客(7)
- 问答 (2)
- 收藏
- 关注
原创 TensorFlow的版本与CUDA等适配问题
如何安装自己想要的版本GPU TensorFlow版本 1. 显卡与驱动 一般一个显卡的驱动并不是固定的,可以根据到NVIDIA官网根据自己的显卡去挑选对应的驱动,匹配即可。 https://www.nvidia.cn/Download/index.aspx?lang=cn 2.确定自己装的TensorFlow版本 一个比较简单的方法,首先更新pip,然后执行如下命令,就能列出所有的TensorFlow的版本 ...
2021-03-31 13:33:08
3051
原创 TensorFlow2.2.0 Allocation of 614400000 exceeds 10% of system memory
2VCPU,4G内存,4G Tesla T4显存做基于CNN的CIFAR10例程的时候,在处理数据集的时候,报错如下: 查资料,一种是在import的时候屏蔽报错信息,并没有意义。另一种说是修改batch size ,于是我尝试了一下,不同的batch size对我的代码并没有影响。所以根本问题,还是4G内存太小了,所以扩到了6G,程序正常跑起来了。 ...
2021-03-10 16:38:32
1596
原创 Keras和TensorFlow中failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED问题解决
运行示例代码时,可以正常使用GPU,但是在运行某些代码时,会出现,failed to create cublas handle: CUBLAS_STATUS_NOT_INITIALIZED 的问题,可能是由于显存不够而造成的。 1、TensorFlow 在使用sess前,加上如上的配置。 config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memo
2020-06-03 15:14:03
8333
9
原创 Linux常见硬件查看命令
1、查看cpu型号 cat /proc/cpuinfo | grep 'model name' |uniq 2、GPU型号查看 yum install pciutils lspci | grep -i vga lspci | grep NVIDIA 3、查看内存 free -h 4、查看硬盘和分区分布 lsblk 3、查看物理cpu的个数 ca...
2019-11-21 11:03:41
352
原创 NVIDIA显卡搭配
1、Tesla P4、T4、P40开发包通用 驱动:NVIDIA-Linux-x86_64-418.87.00.run cuda:cuda_10.0.130_410.48_linux.run cudnn:7.4.2 2、titanxp 驱动:NVIDIA-Linux-x86_64-418.88.run cuda:cuda_10.0.130_410.48_linux.run cudnn...
2019-11-21 10:38:25
761
原创 CentOS服务器搭建Caffe(不完整版本)
0、先将物理机联网,提前搭建好nvidia驱动、CUDA、CUDNN 1、安装epel-release,否则有些Caffe的依赖包会找不到 yum install epel-release 2、安装Caffe依赖 yum install readline-devel protobuf-devel leveldb-devel snappy-devel opencv-devel openc...
2019-11-21 10:16:10
158
原创 CentOS7服务器搭建python35及TensorFlow
注:CentOS7下自带Python27环境,Python3环境需要自己安装。若在安装完python3后,yum安装了包,需要重新编译Python3才可使得python环境中支持该包,否则,及时yum安装了,python也找不到该包。 0、提前搭建好nvidia驱动、CUDA、CUDNN 在物理机联网,没有做网络特殊限制的情况下,直接修改如下文件,进行联网 vim /etc/reso...
2019-11-21 09:55:43
201
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人