c语言 广度优先搜索(Breadth-First Search,BFS)

本文详细介绍了广度优先搜索(BFS)算法,包括其基本思想、使用队列的实现方法,以及时间复杂度O(V+E)和空间复杂度O(V)。此外,文章还列举了BFS在各种实际场景中的应用,如索引构建、GPS导航、路径搜索等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 广度优先搜索(Breadth-First Search,BFS)是一种图遍历算法,通常用于搜索或遍历树和图等数据结构。其基本思想是先访问起始顶点,然后逐层遍历其相邻的顶点,直到找到目标顶点或遍历完所有顶点。

BFS通常使用队列作为辅助数据结构,通过先进先出的方式进行遍历。具体步骤如下:

将起始顶点放入队列中。
从队列中弹出一个顶点,并访问该顶点。
将该顶点的所有未访问过的相邻顶点放入队列。
重复步骤2和3,直到队列为空或找到目标顶点为止。
        BFS算法保证在遍历过程中按层次访问顶点,可以用于查找最短路径、解决迷宫问题等。由于使用队列作为辅助数据结构,BFS的空间复杂度较高,但时间复杂度相对较低。

广度优先搜索示例
让我们通过一个例子来看看广度优先搜索算法是如何工作的。我们使用具有 5 个顶点的无向图。

 具有 5 个顶点的无向图

我们从顶点 0 开始,BFS 算法首先将其放入 Visited 列表中,并将其所有相邻顶点放入堆栈中。 

访问起始顶点并将其相邻顶点添加到队列中 

接下来,我们访问队列前面的元素(即 1)并访问其相邻节点。由于 0 已经被访问过,所以我们访问 2。 

 访问起始节点0的第一个邻居,即1

顶点 2 在 4 中有一个未访问的相邻顶点,因此我们将其添加到队列的后面并访问位于队列前面的 3。 

 访问之前添加到队列中的 2 以添加其邻居

 4 仍在队列中

队列中只剩下 4 个节点,因为 3 的唯一相邻节点(即 0)已经被访问过。我们参观它。 

 访问队列中最后剩余的项目以检查它是否有未访问的邻居

由于队列为空,我们就完成了图的广度优先遍历。

广度优先搜索伪代码 

create a queue Q  -- 创建队列Q
mark v as visited and put v into Q -- 将v标记为已访问,并将v放入Q中
while Q is non-empty -- 如果Q不为空
    remove the head u of Q -- 移除Q的头u
    mark and enqueue all (unvisited) neighbours of u -- 标记并排列u的所有(未访问的)邻居

广度优先搜索算法的代码及其示例如下所示。代码已被简化,以便我们可以专注于算法而不是其他细节。 

 

// BFS algorithm in C

#include <stdio.h>
#include <stdlib.h>
#define SIZE 40

struct queue {
  int items[SIZE];
  int front;
  int rear;
};

struct queue* createQueue();
void enqueue(struct queue* q, int);
int dequeue(struct queue* q);
void display(struct queue* q);
int isEmpty(struct queue* q);
void printQueue(struct queue* q);

struct node {
  int vertex;
  struct node* next;
};

struct node* createNode(int);

struct Graph {
  int numVertices;
  struct node** adjLists;
  int* visited;
};

// BFS algorithm
void bfs(struct Graph* graph, int startVertex) {
  struct queue* q = createQueue();

  graph->visited[startVertex] = 1;
  enqueue(q, startVertex);

  while (!isEmpty(q)) {
    printQueue(q);
    int currentVertex = dequeue(q);
    printf("Visited %d\n", currentVertex);

    struct node* temp = graph->adjLists[currentVertex];

    while (temp) {
      int adjVertex = temp->vertex;

      if (graph->visited[adjVertex] == 0) {
        graph->visited[adjVertex] = 1;
        enqueue(q, adjVertex);
      }
      temp = temp->next;
    }
  }
}

// Creating a node
struct node* createNode(int v) {
  struct node* newNode = malloc(sizeof(struct node));
  newNode->vertex = v;
  newNode->next = NULL;
  return newNode;
}

// Creating a graph
struct Graph* createGraph(int vertices) {
  struct Graph* graph = malloc(sizeof(struct Graph));
  graph->numVertices = vertices;

  graph->adjLists = malloc(vertices * sizeof(struct node*));
  graph->visited = malloc(vertices * sizeof(int));

  int i;
  for (i = 0; i < vertices; i++) {
    graph->adjLists[i] = NULL;
    graph->visited[i] = 0;
  }

  return graph;
}

// Add edge
void addEdge(struct Graph* graph, int src, int dest) {
  // Add edge from src to dest
  struct node* newNode = createNode(dest);
  newNode->next = graph->adjLists[src];
  graph->adjLists[src] = newNode;

  // Add edge from dest to src
  newNode = createNode(src);
  newNode->next = graph->adjLists[dest];
  graph->adjLists[dest] = newNode;
}

// Create a queue
struct queue* createQueue() {
  struct queue* q = malloc(sizeof(struct queue));
  q->front = -1;
  q->rear = -1;
  return q;
}

// Check if the queue is empty
int isEmpty(struct queue* q) {
  if (q->rear == -1)
    return 1;
  else
    return 0;
}

// Adding elements into queue
void enqueue(struct queue* q, int value) {
  if (q->rear == SIZE - 1)
    printf("\nQueue is Full!!");
  else {
    if (q->front == -1)
      q->front = 0;
    q->rear++;
    q->items[q->rear] = value;
  }
}

// Removing elements from queue
int dequeue(struct queue* q) {
  int item;
  if (isEmpty(q)) {
    printf("Queue is empty");
    item = -1;
  } else {
    item = q->items[q->front];
    q->front++;
    if (q->front > q->rear) {
      printf("Resetting queue ");
      q->front = q->rear = -1;
    }
  }
  return item;
}

// Print the queue
void printQueue(struct queue* q) {
  int i = q->front;

  if (isEmpty(q)) {
    printf("Queue is empty");
  } else {
    printf("\nQueue contains \n");
    for (i = q->front; i < q->rear + 1; i++) {
      printf("%d ", q->items[i]);
    }
  }
}

int main() {
  struct Graph* graph = createGraph(6);
  addEdge(graph, 0, 1);
  addEdge(graph, 0, 2);
  addEdge(graph, 1, 2);
  addEdge(graph, 1, 4);
  addEdge(graph, 1, 3);
  addEdge(graph, 2, 4);
  addEdge(graph, 3, 4);

  bfs(graph, 0);

  return 0;
}

代码已被简化,以便我们可以专注于算法而不是其他细节。

BFS算法复杂度
BFS算法的时间复杂度用 的形式表示O(V + E),其中V是节点数,E 是边数。该算法的空间复杂度为O(V)。

BFS算法应用
1、通过搜索索引建立索引
2、用于 GPS 导航
3、路径寻找算法
4、在 Ford-Fulkerson 算法中找到网络中的最大流量
5、无向图中的循环检测
6、在最小生成树中

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn_aspnet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值