给定一个正整数 K,一个圆心在 (0, 0) 处,以及一些点的坐标。任务是找到圆的最小半径,使得至少 k 个点位于圆内。输出最小半径的平方。
例子:
输入:(1, 1), (-1, -1), (1, -1),
k = 3
输出:2
我们需要一个半径至少为 2 的圆来包含 3 个点。
输入:(1, 1), (0, 1), (1, -1),
k = 2
输出:1
我们需要一个半径至少为 1 的圆来包含 2 个点。以 (0, 0) 为圆心、半径为 1 的圆将包含 (1, 1)和 (0, 1)。
其思路是求出每个点到原点 (0, 0) 的欧氏距离的平方。然后,按升序对这些距离进行排序。距离的第 k个元素就是所需的最小半径。
以下是该方法的实现:
# Python3 program to find minimum radius
# such that atleast k point lie inside
# the circle
# Return minimum distance required so
# that atleast k point lie inside the
# circle.
def minRadius(k, x, y, n):
dis = [0] * n
# Finding distance between of each
# point from origin
for i in range(0, n):
dis[i] = x[i] * x[i] + y[i] * y[i]
# Sorting the distance
dis.sort()
return dis[k - 1]
# Driver Program
k = 3
x = [1, -1, 1]
y = [1, -1, -1]
n = len(x)
print(minRadius(k, x, y, n))
# This code is contributed by
# Prasad Kshirsagar
输出:
2
时间复杂度: O(n + nlogn)
辅助空间: O(n)ve。
方法#2:使用二分查找
这段代码使用二分查找法来找到最小半径,使得至少 k 个点位于圆内或圆周上。它首先找到任意两点之间的最大距离,然后在 [0, max_distance] 范围内进行二分查找,找到最小半径。
算法
1. 初始化 left = 0 且 right = 给定点集中任意两点之间的最大距离。
2. 当 left <= right 时,找到 mid = (left + right) / 2
3. 使用简单的线性搜索检查是否存在 k 个点位于半径为 mid 的圆内或圆周上。
4. 如果有 k 个或更多点位于圆内或圆周上,则设 right = mid - 1。
5. 如果少于 k 个点位于圆内或圆周上,则设 left = mid + 1。
6. 二分搜索之后,left 的值将是包含 k 个点所需的最小半径。
示例代码:
import math
def dist(p1, p2):
# Calculate Euclidean distance between two points
return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)
def count_points_in_circle(points, center, radius):
# Count the number of points inside or on the circumference of the circle
count = 0
for point in points:
if dist(point, center) <= radius:
count += 1
return count
def minimum_radius(points, k):
left, right = 0, 0
# Find the maximum distance between any two points
for i in range(len(points)):
for j in range(i+1, len(points)):
d = dist(points[i], points[j])
if d > right:
right = d
while left <= right:
mid = (left + right) / 2
found = False
# Check if there exist k points inside or on the circumference of a circle with radius mid
for i in range(len(points)):
if count_points_in_circle(points, points[i], mid) >= k:
found = True
break
if found:
right = mid - 1
else:
left = mid + 1
return int(left)
# Example usage
points = [(1, 1), (-1, -1), (1, -1)]
k = 3
print(minimum_radius(points, k))
输出:
2
时间复杂度: O(n^2 * log(r)),其中 n 是点的数量,r 是任意两点之间的最大距离。
空间复杂度: O(1),因为它只使用恒定量的额外空间,与输入的大小无关。
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。