Python 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)

给定一个正整数 K,一个圆心在 (0, 0) 处,以及一些点的坐标。任务是找到圆的最小半径,使得至少 k 个点位于圆内。输出最小半径的平方。 

例子:  

输入:(1, 1), (-1, -1), (1, -1), 
         k = 3

输出:2

我们需要一个半径至少为 2 的圆来包含 3 个点。

输入:(1, 1), (0, 1), (1, -1), 
         k = 2

输出:1

我们需要一个半径至少为 1 的圆来包含 2 个点。以 (0, 0) 为圆心、半径为 1 的圆将包含 (1, 1)和 (0, 1)。
其思路是求出每个点到原点 (0, 0) 的欧氏距离的平方。然后,按升序对这些距离进行排序。距离的第 k个元素就是所需的最小半径。

以下是该方法的实现: 

# Python3 program to find minimum radius 
# such that atleast k point lie inside
# the circle


# Return minimum distance required so 
# that atleast k point lie inside the 
# circle.
def minRadius(k, x, y, n):
    dis = [0] * n

    # Finding distance between of each
    # point from origin

    for i in range(0, n):
        dis[i] = x[i] * x[i] + y[i] * y[i]

    # Sorting the distance
    dis.sort()

    return dis[k - 1]
        
# Driver Program
k = 3
x = [1, -1, 1]
y = [1, -1, -1]
n = len(x)

print(minRadius(k, x, y, n))

# This code is contributed by
# Prasad Kshirsagar

输出:
2

时间复杂度: O(n + nlogn)

辅助空间: O(n)ve。

方法#2:使用二分查找

这段代码使用二分查找法来找到最小半径,使得至少 k 个点位于圆内或圆周上。它首先找到任意两点之间的最大距离,然后在 [0, max_distance] 范围内进行二分查找,找到最小半径。

算法

    1. 初始化 left = 0 且 right = 给定点集中任意两点之间的最大距离。

    2. 当 left <= right 时,找到 mid = (left + right) / 2

    3. 使用简单的线性搜索检查是否存在 k 个点位于半径为 mid 的圆内或圆周上。 
    
    4. 如果有 k 个或更多点位于圆内或圆周上,则设 right = mid - 1。

    5. 如果少于 k 个点位于圆内或圆周上,则设 left = mid + 1。

    6. 二分搜索之后,left 的值将是包含 k 个点所需的最小半径。

示例代码: 

import math

def dist(p1, p2):
    # Calculate Euclidean distance between two points
    return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)

def count_points_in_circle(points, center, radius):
    # Count the number of points inside or on the circumference of the circle
    count = 0
    for point in points:
        if dist(point, center) <= radius:
            count += 1
    return count

def minimum_radius(points, k):
    left, right = 0, 0
    # Find the maximum distance between any two points
    for i in range(len(points)):
        for j in range(i+1, len(points)):
            d = dist(points[i], points[j])
            if d > right:
                right = d
    while left <= right:
        mid = (left + right) / 2
        found = False
        # Check if there exist k points inside or on the circumference of a circle with radius mid
        for i in range(len(points)):
            if count_points_in_circle(points, points[i], mid) >= k:
                found = True
                break
        if found:
            right = mid - 1
        else:
            left = mid + 1
    return int(left)

# Example usage
points = [(1, 1), (-1, -1), (1, -1)]
k = 3
print(minimum_radius(points, k))

输出:
2

时间复杂度: O(n^2 * log(r)),其中 n 是点的数量,r 是任意两点之间的最大距离。

空间复杂度: O(1),因为它只使用恒定量的额外空间,与输入的大小无关。

如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn_aspnet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值