Java 角度扫描(给定半径的圆内可以包含的最大点数)

Java 角度扫描(给定半径的圆内可以包含的最大点数)【Angular Sweep (Maximum points that can be enclosed in a circle of given radius)】

给定二维平面上的 n 个点,求出最多有多少个点可以被半径为 R 的定半径圆包围。 

注意:即使点位于圆周上,也被认为位于圆内。

例子: 

输入:R = 1 
            points[] = {(6.47634, 7.69628), (5.16828 4.79915), 
                              (6.69533 6.20378)}
输出:2

最大点数为 2

输入:R = 1 
              points[] = {(6.65128, 5.47490), (6.42743, 6.26189) 
                                (6.35864, 4.61611), (6.59020 4.54228), (4.43967 5.70059) 
                                (4.38226, 5.70536), (5.50755 6.18163), (7.41971 6.13668) 
                                (6.71936, 3.04496), (5.61832, 4.23857), (5.99424, 4.29328) 
                                (5.60961, 4.32998), (6.82242, 5.79683), (5.44693, 3.82724) | 
                                (6.70906, 3.65736), (7.89087, 5.68000), (6.23300, 4.59530) 
                                (5.92401, 4.92329), (6.24168, 3.81389), (6.22671, 3.62210)}
输出:11

最大点数为 11

朴素算法:

    对于给定集合中的任意一对点(例如 A 和 B),构造半径为“R”且与这两个点都相切的圆。这样的圆最多有 2 个。正如我们在这里看到的,对于 CASE 1,即 2,最多可能有 2 个圆。

1、对于每个构造的圆,检查集合中的每个点是否位于圆内。

2、返回包含最大点数的圆。

时间复杂度:有n C ^ 2个点对,对应最多可以有2 n C ^ 2 个圆。对于每个圆,需要检查(n-2)个点。这使得朴素算法复杂度为 O(n ^ 3 )。

角度扫描算法:

    通过使用角度扫描 (Angular Sweep),我们可以在O(n 2 log n) 的复杂度内解决这个问题。该算法的基本逻辑思想如下。

    我们从给定集合中选取任意一个点 P。然后,我们围绕点 P 旋转一个半径为“R”的圆。在整个旋转过程中,P 位于圆的圆周上,我们保持圆中点数的计数为给定值 ?,其中参数 ? 决定了旋转角度。因此,由于半径是固定的,因此圆的状态可以通过单个参数 ? 来确定。 

    我们还可以看到,仅当集合中的点进入或退出圆时,维护的计数值才会改变。

在给定的图中,C1 是 ? = 0 的圆,C2 是将圆旋转至 ? 的某个值时构造的圆。
这样一来,问题就简化为如何维护 count 的值。 
对于除 P 之外的任何给定点(例如 Q),我们可以轻松计算出该点进入圆时 ? 的值(设 ?),以及该点离开圆时 ? 的值(设 ?)。 

我们对角度 A 和 B 的定义如下, 

    A 是 PQ 和 X 轴之间的角度。

    B 是 PC 和 PQ 之间的角度,其中 C 是圆心。

其中,x 和 y 表示点的坐标,“d”是 P 和 Q 之间的距离。
现在,从图中我们可以看到,

?= AB 
?= A + B

(注意:所有角度均相对于 X 轴。因此,它变成“A-B”而不是“B-A”)。

当 Q 进入圆时 

当 Q 退出圆时 

我们可以计算除 P 点之外所有点的 A 角和 B 角。找到这些角后,我们对它们进行排序,然后按升序遍历。现在我们维护一个计数器,它告诉我们在特定时刻圆内有多少个点。 
只有当一个点进入或退出圆时,计数才会改变。如果我们找到一个进入角,我们就将计数器加 1;如果我们找到一个退出角,我们就将计数器减 1。使用标志位可以轻松检查角度是进入角还是退出角。 
如此循环下去,计数器始终会返回一个有效值,用于表示特定状态下圆内点的数量。

重要提示: 'd'>2R 的点不需要考虑,因为它们永远不会进入或退出圆。

角度扫描算法可以描述为:

    1、计算每对n C 2点之间的距离并存储【n C 2如图:】。

    2、对于任意点(比如 P),使用 getPointsInside() 函数获取位于围绕 P 旋转的圆内的点的最大数量。

    3、返回的所有值中的最大值将作为最终答案。

以下是上述方法的实现:

import java.util.*;

class MaximumPointsInCircle {
    static final int MAX_POINTS = 500;
    static Point[] arr = new Point[MAX_POINTS];
    static double[][] dis = new double[MAX_POINTS][MAX_POINTS];

    static class Point {
        double x, y;

        public Point(double x, double y) {
            this.x = x;
            this.y = y;
        }
    }

    static int mycompare(AbstractMap.SimpleEntry<Double, Boolean> A, AbstractMap.SimpleEntry<Double, Boolean> B) {
        if (A.getKey() < B.getKey())
            return -1;
        else if (A.getKey() > B.getKey())
            return 1;
        else
            return (A.getValue() ? 1 : -1);
    }

    static int getPointsInside(int i, double r, int n) {
        List<AbstractMap.SimpleEntry<Double, Boolean>> angles = new ArrayList<>();

        for (int j = 0; j < n; j++) {
            if (i != j && dis[i][j] <= 2 * r) {
                double B = Math.acos(dis[i][j] / (2 * r));
                double A = Math.atan2(arr[j].y - arr[i].y, arr[j].x - arr[i].x);
                double alpha = A - B;
                double beta = A + B;
                angles.add(new AbstractMap.SimpleEntry<>(alpha, true));
                angles.add(new AbstractMap.SimpleEntry<>(beta, false));
            }
        }

        angles.sort((A, B) -> mycompare(A, B));

        int count = 1, res = 1;
        for (AbstractMap.SimpleEntry<Double, Boolean> angle : angles) {
            if (angle.getValue())
                count++;
            else
                count--;

            if (count > res)
                res = count;
        }

        return res;
    }

    static int maxPoints(Point[] arr, int n, int r) {
        for (int i = 0; i < n - 1; i++) {
            for (int j = i + 1; j < n; j++) {
                dis[i][j] = dis[j][i] = Math.hypot(arr[i].x - arr[j].x, arr[i].y - arr[j].y);
            }
        }

        int ans = 0;
        for (int i = 0; i < n; i++) {
            ans = Math.max(ans, getPointsInside(i, r, n));
        }

        return ans;
    }

    public static void main(String[] args) {
        arr[0] = new Point(6.47634, 7.69628);
        arr[1] = new Point(5.16828, 4.79915);
        arr[2] = new Point(6.69533, 6.20378);
        int r = 1;
        int n = 3;

        System.out.println("The maximum number of points are: " + maxPoints(arr, n, r));
    }
}

输出: 

最大点数为:2

时间复杂度:我们调用 getPointsInside() 函数来获取 n 个点。该函数作用于 n-1 个点,得到大小为 2*(n-1) 的向量“角度”(一个入射角和一个出射角)。现在,对这个“角度”向量进行排序和遍历,使得 getPointsInside() 函数的复杂度等于 O(nlogn)。这使得角度扫描算法复杂度为 O(n 2 log n)。

空间复杂度:O(n),因为使用了辅助空间来存储向量。

如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn_aspnet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值