np.newaxis 为 numpy.ndarray(多维数组)增加一个轴

本文详细介绍了NumPy中的np.newaxis概念及其用法,通过实例演示了如何使用np.newaxis进行数组操作,如增加维度、索引特定列及多维数组的拼接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

>> type(np.newaxis)
NoneType
>> np.newaxis == None
True
   
   
  • 1
  • 2
  • 3
  • 4

np.newaxis 在使用和功能上等价于 None,其实就是 None 的一个别名。

1. np.newaxis 的实用

>> x = np.arange(3)
>> x
array([0, 1, 2])
>> x.shape
(3,)

>> x[:, np.newaxis]
array([[0],
       [1],
       [2]])

>> x[:, None]
array([[0],
       [1],
       [2]])

>> x[:, np.newaxis].shape
 (3, 1)

   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

2. 索引多维数组的某一列时返回的是一个行向量

>>> X = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> X[:, 1]
array([2, 6, 10])       % 这里是一个行
>>> X[:, 1].shape       % X[:, 1] 的用法完全等同于一个行,而不是一个列,
(3, )
   
   
  • 1
  • 2
  • 3
  • 4
  • 5

如果我们索引多维数组的某一列时,返回的仍然是列的结构,一种正确的索引方式是:

>>>X[:, 1][:, np.newaxis]
array([[2],
      [6],
      [10]])
   
   
  • 1
  • 2
  • 3
  • 4

如果想实现第二列和第四列的拼接(层叠):

>>>X_sub = np.hstack([X[:, 1][:, np.newaxis], X[:, 3][:, np.newaxis]])           
                   % hstack:horizontal stack,水平方向上的层叠
>>>X_sub
array([[2, 4]
      [6, 8]
      [10, 12]])
   
   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

当然更为简单的方式还是使用切片:

>> X[:, [1, 3]]
array([[ 2,  4],
       [ 6,  8],
       [10, 12]])
   
   
  • 1
  • 2
  • 3
  • 4
版权声明:本文为博主原创文章,未经博主允许不得转载。
 
leixingzhi7
  • leixingzhi7
    2017-08-21 19:131楼
  • X[:, 1][:, np.newaxis]可以简化为:X[:, np.newaxis, 1]
  • 回复 
SHY_SOUL
  • SHY_SOUL
    2017-09-09 14:00
  • 回复leixingzhi7: 但是感觉这样写,不如原来的那个好理解
lanchunhui
  • lanchunhui
    2017-08-21 21:35
  • 回复leixingzhi7:恩,补充得很好。
标题基于Spring Boot的骑行路线规划与分享平台研究AI更换标题第1章引言介绍骑行路线规划与分享平台的研究背景、意义、国内外现状以及本论文的方法和创新点。1.1研究背景与意义分析骑行运动普及和路线分享需求,阐述平台设计的必要性。1.2国内外研究现状概述国内外在骑行路线规划与分享方面的技术发展和应用现状。1.3研究方法与创新点说明本文采用的研究方法和实现的创新功能。第2章相关理论与技术介绍Spring Boot框架、路线规划算法和分享技术的基础理论。2.1Spring Boot框架概述解释Spring Boot的核心概念和优势,以及在本平台中的应用。2.2路线规划算法原理阐述常用的路线规划算法,如Dijkstra、A等,并分析其适用场景。2.3分享技术实现方式介绍平台实现路线分享所采用的技术手段,如社交媒体集成、二维码生成等。第3章平台需求分析与设计详细阐述骑行路线规划与分享平台的需求分析、系统设计和数据库设计。3.1需求分析从用户角度出发,分析平台应具备的功能和性能要求。3.2系统设计设计平台的整体架构、模块划分以及各模块之间的交互方式。3.3数据库设计根据平台需求,设计合理的数据库表结构和数据存取方式。第4章平台实现与测试说明平台的开发环境、关键模块的实现过程,以及系统测试的方法与结果。4.1开发环境搭建介绍开发平台所需的软硬件环境及其配置方法。4.2关键模块实现详细描述路线规划、路线分享等核心功能的实现细节。4.3系统测试与性能评估对平台进行功能测试、性能测试,并分析结果以验证系统的稳定性和可靠性。第5章结论与展望总结本文的研究成果,指出不足之处,并展望未来的研究方向和改进措施。5.1研究结论概括性地阐述本文的主要研究内容和取得的成果。5.2未来工作展望针对当前研究的局限性,提出未来可能的改进方向和扩展功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值