faster-rcnn在ubuntu环境下的配置以及demo运行

本文介绍了在Ubuntu系统中配置和运行Faster R-CNN的详细步骤,包括从GitHub克隆源代码、生成Cython模块、配置Caffe、下载模型以及运行demo。在配置过程中,强调了注意事项和可能遇到的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先在文章开头对Shaoqing Ren , Kaiming He, Ross Girshick , Jian Sun四位作者表示感谢,作者6666666666

下面的步骤并没有关于caffe的相关配置,在进行这些步骤前,需要将caffe什么的,cuda什么的先搞好才行,好了,下面简单介绍一下如何配置使用作者的劳动成果:

1.到github上面下载源代码(作者已经给出)
~cd /yourpath/
~git clone –recursive https://github.com/rbgirshick/py-faster-rcnn.git
注意前面的–recursive,一般建议就这样下载,如果没加,需要再多做一步
~git submodule update –init –recursive

2.生成Cython模块
~cd ……./py-faster-rcnn/lib
make

3.生成Caffe和pycaffe
~cd ……/py-faster-rcnn/caffe-fast-rcnn
~cp Makefile.config.example Makefile.config

修改Makefile.config文件
打开后修改以下代码,代表你要使用python层和cudnn,一般就是取消注释,保存
1. WITH_PYTHON_LAYER := 1
2. USE_CUDNN := 1

~cd ……/py-faster-rcnn/caffe-fast-rcnn
~mkdir build
~cd build
~cmake ..
~make all -j16
~make install
~make runtest -j16
一般这个步骤可能会出现点error,不用担心,不影响后面的运行
~make pycaffe

4.下载作者提供的模型

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值