
Machine Learning
才不是本人
修身,穷理,有趣
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习入门☞资源获取
入门书籍:入门书籍:统计学:《统计学习方法 李航》 机器学习实践:《机器学习实战》原创 2018-05-18 15:43:47 · 480 阅读 · 2 评论 -
机器学习入门☞k-近邻算法(kNN)
k-邻近算法k近邻算法的一般流程疑问:耗时算法实现疑问2:如何准备数据?分析数据分析结果图分析结果图2:归一化数值测试测试结果整合系统显示结果:k-邻近算法下图有四个元组(坐标),分为两类(A,B) - 我们通过计算(这里使用欧氏距离)一个待输入的点与其他点的距离,并按照小->大排序. - 确定前K个(K&原创 2018-05-18 18:31:28 · 457 阅读 · 0 评论 -
机器学习入门☞朴素贝叶斯
本文适用读者:朴素贝叶斯的优缺点及其适用性:朴素贝叶斯的一般过程:词表到向量的转换函数将以下代码写入到bayes.py文件中测试一下:从词向量计算概率:朴素贝叶斯分类器训练函数:测试一下:本文适用读者:了解朴素贝叶斯,并且python version 为 3.x朴素贝叶斯的优缺点及其适用性: 优点:在数据较少的情况下仍然有效,...原创 2018-08-23 19:23:52 · 317 阅读 · 0 评论 -
机器学习入门☞Logistic回归
本文适用读者:了解朴素贝叶斯,并且python version 为 3.x一、利用Logistic回归进行分类的主要思想: 其根据现有数据对分类边界线建立回归公式,以此进行分类.这里的”回归”一词源于最佳拟合,表示要找到最佳拟合参数集.二、优缺点: 优点:计算代价不高,易于理解与实现 缺点:容易欠拟合,分类精度可能不高 使用数据类型:数值型和标称型...原创 2018-09-12 15:33:17 · 251 阅读 · 0 评论