如果理解数字信号处理中傅里叶变换的周期为2pi?

本文解析了傅里叶变换中0~2π如何代表整个信号频率范围的问题,通过探讨模拟信号与数字信号的关系,解释了数字频率的周期性特点及离散信号频谱的周期性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分析信号的频谱特性时,经常要对信号进行傅里叶变换,但傅里叶变换是以2pi为周期,而时域里的信号角频率的范围是很宽的,为什么傅里叶变换中的0~2pi可以代表信号整个频率范围。

 

1。模拟信号的频率:我们这样理解,模拟频率越大,信号变化越快。我们拿构成模拟信号的频率分量来说吧,比如cos(Ωt)。
2。数字信号是对模拟信号[等间隔]抽样得到的,即cos(ΩTn)=cos(wn),w=ΩT[称为数字频率],由于离散[数字]信号的自变量是n是整数,因此数字频率w与w+2pi*M是同一个数字频率!即cos(wn)=cos[(w+2pi*M)n]。对离散信号作傅里叶变换,实际上是将离散信号[量化后就是数字信号]分解为 e^jwn的线性组合,其频谱就具有周期性,频率为w的频谱等于  频率为w+2piM的频谱。

3。再来看cos(wn)是构成实数离散信号的基本信号;他最大的频率是多少呢?周期最小N=1,故变化最快的是w=pi;变化最慢的当然是直流w=0。因此w=0代表的频率最小,w=pi是最高频率,对应模拟信号的频率为Ω=w/T=pi/T=Ωs/2[抽样频率的一半]。对实数离散信号来说,0~2pi的频谱图是以w=pi对称的。

4。根据时域抽样定理,抽样频率Ωs最小为被抽样模拟信号最高频率的2倍;因此可以认为被抽样模拟信号最高频率=Ωs/2,这个频率对应数字频率的pi。

5。实际中即使模拟信号的最高频率是无穷大,但是可以通过滤波,滤去无用的高频分量,再对他抽样以避免 频谱混叠。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值