神经网络搭建
一、Keras
tf.keras 是 tensorflow2 引入的高封装度的框架, 可以用于快速搭建神经网络模型, keras 为支持快速实验而生,能够把想法迅速转换为结果, 是深度学习框架之中最终易上手的一个,它提供了一致而简洁的 API,能够极大地减少一般应用下的工作量,提高代码地封装程度和复用性。
- import——导入所需的各种库和包
- x_train, y_train——导入数据集、 自制数据集、数据增强
- model=tf.keras.models.Sequential/class MyModel(Model)
model=MyModel——定义模型 - model.compile——配置模型
- model.fit——训练模型、 断点续训
- model.summary
1. 导入tf.keras
import tensorflow as tf
from tensorflow import keras
2. 搭建模型
—tf.keras.models.Sequential()
Sequential 函数是一个容器, 描述了神经网络的网络结构,在 Sequential
函数的输入参数中描述从输入层到输出层的网络结构。
model = tf.keras.models.Sequential()
如:
拉直层: tf.keras.layers.Flatten()拉直层可以变换张量的尺寸,把输入特征拉直为一维数组,是不含计算参数的层。
全连接层: tf.keras.layers.Dense( 神经元个数, activation=”激活函数”,kernel_regularizer=”正则化方式”)
其中:
-
activation(字符串给出)可选 relu、 softmax、 sigmoid、 tanh 等
-
kernel_regularizer 可选 tf.keras.regularizers.l1()、tf.keras.regularizers.l2()
卷积层: tf.keras.layers.Conv2D( filter = 卷积核个数,kernel_size = 卷积核尺寸,strides = 卷积步长,padding = “valid” or “same”)
LSTM 层: tf.keras.layers.LSTM()。
—Model.compile( optimizer = 优化器,loss = 损失函数,metrics = [“准确率”])
Compile 用于配置神经网络的训练方法,告知训练时使用的优化器、损失函数和准确率评测标准。
其中:
optimizer 可以是字符串形式给出的优化器名字,也可以是函数形式,使用函数形式可以设置学习率、动量和超参数。
可选项包括:
- ‘sgd’or tf.optimizers.SGD( lr=学习率,decay=学习率衰减率,momentum=动量参数)
- ‘adagrad’or tf.keras.optimizers.Adagrad(lr=学习率,decay=学习率衰减率)
- ‘adadelta’or tf.keras.optimizers.Adadelta(lr=学习率,decay=学习率衰减率)
- ‘adam’or tf.keras.optimizers.Adam (lr=学习率,decay=学习率衰减率)
Loss 可以是字符串形式给出的损失函数的名字,也可以是函数形式。
可选项包括:
- ‘mse’or tf.keras.losses.MeanSquaredError()
- ‘sparse_categorical_crossentropy or tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
损失函数常需要经过 softmax 等函数将输出转化为概率分布的形式。from_logits 则用来标注该损失函数是否需要转换为概率的形式, 取 False 时表示转化为概率分布,取 True 时表示没有转化为概率分布,直接输出。
Metrics 标注网络评测指标。
可选项包括:
- ‘accuracy’: y_和 y 都是数值,如 y_=[1] y=[1]。
- ‘categorical_accuracy’: y_和 y 都是以独热码和概率分布表示。如 y_=[0, 1, 0], y=[0.256, 0.695, 0.048]。
- ‘sparse_ categorical_accuracy’: y_是以数值形式给出, y 是以独热码形式
给出。如 y_=[1],y=[0.256, 0.695, 0.048]。
—model.fit(训练集的输入特征, 训练集的标签, batch_size, epochs,validation_data = (测试集的输入特征,测试集的标签),validataion_split = 从测试集划分多少比例给训练集,validation_freq = 测试的 epoch 间隔次数)
fit 函数用于执行训练过程。
—model.summary()
summary 函数用于打印网络结构和参数统计
二、举例
#导入包
import tensorflow as tf
from sklearn import datasets
import numpy as np
#加载数据集
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
#将数据集打乱
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
#搭建模型
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])
#from_logits=False这里为false因为Sequential层的激活函数为softmax,是处理后的数据,并不是源数据
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()