性别年龄论文阅读(1)——imdb-wiki

本文介绍ICCV2015发表的DEX论文,提出基于深度学习的年龄预测方法,利用IMDB-WIKI数据集,包含50万名人照片,为最大年龄预测公共数据集。DEX在ChaLearnLAP2015挑战赛中夺冠。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

性别年龄论文阅读(1)——imdb-wiki

版权声明:本文为博主原创文章,未经博主允许不得转载 https://blog.csdn.net/heruili/article/details/88080703
最近半年在做表情,性别,年龄的工作,看了很多有关论文,怕自己会忘记也方便以后自己查找,所以写博客做个总结记录
这里先说一下有关性别年龄的论文:

看的第一篇是发表于ICCV2015年的 DEX: Deep EXpectation of apparent age from a single image
该论文提出了一个新的年龄数据集 imdb-wiki

本文研究了深度学习的静止人脸图像的视年龄估计问题。我们的卷积神经网络(CNNs)使用VGG-16架构,并在ImageNet上进行图像分类的预处理。此外,由于表观年龄标注图像的数量有限,我们探讨了finetuning对具有可用年龄的互联网人脸图像的好处。我们从IMDB和维基百科上抓取了50万张名人的照片公开使用。这是迄今为止最大的年龄预测公共数据集。我们将年龄回归问题作为一个深度分类问题,然后使用softmax期望值进行细化,并显示了相对于直接回归训练的改进。我们提出的方法,深度期望(DEX)的表观年龄,首先在测试图像检测face,然后再裁剪的人脸上提取CNN预测从20个网络的集合。在抓取的图像上对DEX的CNNs进行细化,在运用到对其进行明显的年龄标注提供的图像上。DEX不使用明显的面部特征点。我们的DEX是ChaLearn LAP 2015“表观年龄估算挑战赛”的冠军(第1名),共有115支注册队伍参赛,远远超过了人类的参考数据

1. the IMDB-WIKI dataset, the largest dataset for biological age pr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值