微软提出实时竞价算法并用于效果展示广告分配

本文介绍了微软研究团队提出的实时竞价算法,旨在解决基于效果的展示广告分配问题,以最大化收益并考虑预算等约束。相较于离线求解优化问题的方法,该实时算法能在单个曝光层面进行更精准的广告分配,并通过两种实时竞价调整策略适应市场变化。文章详细阐述了算法的原理、对偶问题转换以及控制论和统计模型在竞价调整中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation

Ye Chen, Pavel Berkhin, Bo Anderson, Nikhil R. Devanur

Microsoft Research

https://www.cse.fau.edu/~xqzhu/courses/cap6807/reading/performance.based.pdf

这篇文章提出一种实时竞价算法,用于基于效果的展示广告分配。效果展示广告的核心问题是将创意跟广告曝光关联起来,可以形式化为有约束的优化问题,目标是最大化收益,约束条件是比如预算约束,库存量等。

目前有些实践做法是,离线求解这种优化问题,并且是在曝光粒度来求解的,然后基于预先计算的静态分配方案服务于在线广告。尽管这种离线方法基于全局视角来得到优化解,它无法在单个曝光层面进行广告分配。

作者们提出一种实时竞价算法,可以提升细粒度曝光的价值,比如定向实时转化用户,根据实时限制,比如预算消耗约束,来调整基于价值的竞价。理论上,在线性约束原始-对偶形式下,这种简单的实时竞价算法可以作为一种原始问题的线上求解器,将原问题的最优解作为对偶问题的输入。给定离线优化相同层面的知识,这种线上算法可以保证至少可以达到离线最优解。

为了自适应市场的不稳定性,作者们开发并实验了两种实时竞价调整算法。一种利用控制论方法来调整竞价,同时满足实时约束。另一种方法基于统计模型的历史竞价策略来调整竞价。

这篇文章的研究背景如下

97422bebf47cf42dca3a047e9af64cd2.png

离线算法具有以下局限性

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值