Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation
Ye Chen, Pavel Berkhin, Bo Anderson, Nikhil R. Devanur
Microsoft Research
https://www.cse.fau.edu/~xqzhu/courses/cap6807/reading/performance.based.pdf
这篇文章提出一种实时竞价算法,用于基于效果的展示广告分配。效果展示广告的核心问题是将创意跟广告曝光关联起来,可以形式化为有约束的优化问题,目标是最大化收益,约束条件是比如预算约束,库存量等。
目前有些实践做法是,离线求解这种优化问题,并且是在曝光粒度来求解的,然后基于预先计算的静态分配方案服务于在线广告。尽管这种离线方法基于全局视角来得到优化解,它无法在单个曝光层面进行广告分配。
作者们提出一种实时竞价算法,可以提升细粒度曝光的价值,比如定向实时转化用户,根据实时限制,比如预算消耗约束,来调整基于价值的竞价。理论上,在线性约束原始-对偶形式下,这种简单的实时竞价算法可以作为一种原始问题的线上求解器,将原问题的最优解作为对偶问题的输入。给定离线优化相同层面的知识,这种线上算法可以保证至少可以达到离线最优解。
为了自适应市场的不稳定性,作者们开发并实验了两种实时竞价调整算法。一种利用控制论方法来调整竞价,同时满足实时约束。另一种方法基于统计模型的历史竞价策略来调整竞价。
这篇文章的研究背景如下
离线算法具有以下局限性
<