2024人工智能创业现状-The State of AI Startups in 2024

前言:Latent Space Live在温哥华举办了NeurIPS 2024的第一场主题演讲,讨论了2024年人工智能创业现状,由Conviction基金的两位合伙人Sarah Guo和Pranav Reddy主持,分享了对当前AI领域趋势的观察和投资见解。他们认为,尽管2023年AI领域竞争激烈,但2024年将出现更多机会,尤其是在开源模型、新应用场景和赋能层方面。他们还强调了初创公司在服务自动化、新用户体验和数据方面的优势,并认为市场机会巨大,鼓励大家抓住机遇。

我认为这次演讲既有2024年AI技术的发展趋势,投资市场的变化,又谈到了初创企业的机会。其中提到的AI产品开发需要创造力AI允许根据结果和服务收费AI对于非传统市场很有用传统企业存在创新者窘境小模型在特定领域非常有效等观点既有深度,又非常务实,推荐阅读。

关键词:软件3.0,基于结果的定价,产品创造力,新模态涌现,服务自动化,技能民主化,小模型,非传统市场

要点

  • 基础模型竞争加剧,开源模型表现出色,缩小了与专有模型的差距
  • 成本大幅下降,促进了创新
  • 新模态涌现,例如生物学、语音和代码等领域
  • 融资环境趋于理性,资金更多流向有实际增长,而非仅靠炒作的初创公司
  • AI初创企业生态系统充满活力
  • 软件3.0的概念代表了软件开发全栈的重构,初创公司因其灵活性和创新性而具有优势

以下是正文。

我先简单介绍一下,我们两年前成立了一支风险投资基金叫Conviction,投资涵盖了以下从基础模型、替代架构、特定领域训练以及应用层面的公司,在此之前,我在Greylock工作了大约十年。我们相信,当前的技术革命可能是我们一生中最大的变革,这带来了巨大的商业机会。我们认为,市场剧烈变化时,产品类型和创始人会随之改变,现有VC的思维模式可能不再适用,因此有机会通过第一性原理来获得机会。两年过去了,我们很乐意与大家分享一些观点和预测。

首先我们介绍2024年观察到的大模型格局,讨论AI初创公司正在发生的变化,最后分享我们的投资洞察。

我们回到去年的这个时候,2023年10月,OpenAI刚支持了图像模态,Mistral发布了Mixtral 8*7B模型,Google发布了Gemini来替代Bard,欧洲宣布了第一轮AI监管法规。

2024年发生了哪些变化?我们从五个方面分享2024年对于AI和初创企业的影响。

首先,基础模型领域的竞争比2023年更加激烈。LLM Arena的用户评估显示,OpenAI模型已经从领先100分以上变成了略微落后于Google Gemini。这表明大语言模型的切换非常容易,人们正在尝试不同的选择来找到最适合自己的模型。2023年11月,OpenAI占据了90%的市场份额,目前已降至60%左右。

下图是Ramp的数据,可以看到选择越来越多。

其次,开源模型越来越有竞争力。Scale的独立评估显示,开源模型在数学、指令遵循和对抗鲁棒性方面表现优异。LLama模型在多个评估中名列前茅。

在某些领域,基础模型公司拥有更多的数据或针对特定用例的训练专业知识。然而,开源模型正变得越来越有效,这一趋势在各项评估中都得到了验证。

这里有两点值得注意。首先,令人惊讶的是,排名第九的模型,仅落后于最先进模型两分,却是一个拥有700亿参数的模型。这会让许多认为智能主要是一种涌现特性,并且智能在较小模型中的压缩存在极限的人感到意外。

一年前,参数规模在100亿以下的最佳小模型是Mistral 7B,在该评估中得分约为60分。而如今,Llama 8B模型的得分提高了10多分。最先进大模型与小模型之间的差距正在缩小。

第三,AI成本大幅下降。OpenAI的API成本在过去一年半中下降了80-85%,其他模型的价格也在下降,这使得创建大量数据变得更加经济实惠。

哪些途径可以追踪不同API和公共推理选项下每token的成本?我们做了一些计算:如果你想重现像NotionCoda这样文本编辑器所处理的数据量,生成相应数量的token可能需要花费几千美元。这相当令人印象深刻。虽然数据分布显然不同,但它让我们对规模有了一个概念——可以生成的数据量是巨大的。

第四,新模态开始发挥作用。我们在生物学领域看到了Chai Discovery的Chai1开源模型,它在某些方面超越了AlphaFold3。令人印象深刻的是,这一成就是在大约一年的时间内,通过高度特定的数据集和技术方法实现的。

低延迟语音模型也带来了全新的交互体验。我们相信它不仅仅是一个功能—它代表了一种全新的体验和交互范式。使用语音模式与传统以转录为先的模型相比,感觉上有着根本性的不同。

此外,代码执行等新用例也开始出现,我认为我们仍处于AI编码的早期阶段,Cognition成立于一年前,第一款产品大约在九个月前推出,这令人印象相当深刻。

最后一种新模态还是视频。第一个视频是我很喜欢的笑话,采用Sora生成。

第二个是我们投资的Heygen,它们专注于实时演讲的翻译和配音,包括口型同步,看上去就像原音一样,并且蕴含原来的情感,这让人印象深刻。

最后一点是关于Scaling Law。我们认为,虽然Scaling的收益可能已经有限,但是新的范式正在出现。测试时间计算扩展(Test time computes scaling)是一个有趣的方向,OpenAI已经在这方面取得了一些进展。我们觉得基础模型应用将开发出更好的方法。目前它看起来在高度可验证的领域(例如数学、物理,其次是软件工程)效果显著,因为这些领域可以建立客观的价值函数。

未来一年的一个开放性问题将是如何为约束较少或定义不明确的空间生成这些价值函数。这让我们面临一个问题:在这些领域中该如何继续推进。

这对初创企业意味着什么?

我认为,一种普遍的观点是,我们处于人工智能泡沫中。大量资金流向人工智能公司和初创公司,这与实际成果或实际进展不符,大量初创企业主要依靠炒作来募集资金。

我们提取了一些PitchBook的数据,2024年的可能不完整。看起来资金面出现了大幅复苏,似乎2025年将会与2021年相似,但是仔细观察会发现,红色的部分来自于基础大模型,募集了高达300-400亿美元。

实际情况是融资环境更加理性和合理,我们不太可能重蹈2021的覆辙。虽然大模型公司募资巨大,但是钱投向运作良好的企业更为均衡。

虽然我们不能分享每家企业的具体数据,但这是我们投资组合中增长异常迅猛的公司之一,通过PLG模式从0到2000万美元ARR的增速让人印象深刻。

我们选取了部分收入超过1000万美金的公司,谈谈我们注意到的几种有效的通用模式。

第一种模式是服务的自动化。如今,企业里有大量工作没有被解决,要么是因为人力成本太高,要不是因为向他们提供成功所需的特定背景信息代价太大,或者管理这样的团队过于复杂。例如在记录方面,雇佣专业人员成本极高,像Sierra和Decagon这样专注于客户支持的公司来说,高级自动化技术非常有用,正在带来显著增长。同样对于Harvey和EvenUp来说,策略是从第一波的专业服务开始,然后逐步扩展。

第二波趋势是,我们注意到更好的搜索和寻找新朋友的兴起。基于文本的模式效果非常显著。像Character AI和Replika这样的公司取得了显著成功,同时还有一系列在文本生成方面表现出色的非工作场景聊天机器人,这些机制极具吸引力。在生产力方面,Perplexity和Glean也展示了强大的能力。曾在搜索公司工作的我,对人们如何捕捉和学习信息的范式演变特别感兴趣。我们认为文本不太可能是最终的媒介;信息图表或其他形式的信息呈现可能更有用或更具吸引力。然而,文本仍然是一个引人入胜的起点。

我长期关注的一个领域是各种技能的民主化,无论是创意还是技术。过去几年在这方面取得了显著进展,涵盖了音频、视频、图像、媒体、文本等多种形式,现在甚至包括完全功能性的应用程序和代码。这些公司增长动力的一个特别引人入胜之处在于,终端用户大多不是风险投资行业传统上优先考虑的市场。

我们基金的一个核心前提是,存在对创造力—视觉、音频和技术—的潜在巨大需求,而人工智能应用可以有效满足这一需求。例如,MidJourney在这一领域一直是先驱。最初,许多人低估了它的潜力,质疑有多少人会想要生成不易编辑或无法在专业环境中使用的图像。然而,现实是,在广泛的用例中,这种需求非常巨大。

随着能力的不断提升,我们相信这些领域的质量和可控性将显著加深。我们仍处于这一AI浪潮的早期阶段,增长潜力依然巨大。

另外一类机会来自于赋能层。简而言之,这指的是计算和数据。数据的需求已经发生了显著变化;如今,市场对更专业的数据和不同形式的数据有了更高的需求。我们稍后会详细讨论这一点,特别是在谁拥有推理轨迹方面,这些轨迹对于公司进行自身训练非常有价值。这一领域经历了爆炸性增长,我们也在持续投资。

当时,公司和投资者之间流行着一种说法,引发了关于生态系统中价值所在以及初创企业是否有机会的激烈讨论。如果你还记得,“GPT包装器”这一说法曾一度主导了科技生态系统,它代表着一种观点,即应用层没有价值。人们认为必须专注于预训练,而在这个领域没有人能赶上OpenAI。这并不是对OpenAI的批评,因为它们在推动生态系统发展方面做出了令人难以置信的工作。

我们继续与他们以及其他伙伴合作,但认为创新机会不大的说法显然是不正确的。生态系统充满了创新,提供了在不同领域表现出色的各种模型、价格竞争以及开源选择。测试时扩展(test-time scaling)的一个被低估的方面是它能够更好地将用户价值与计算支出对齐。对于新公司来说,这意味着客户可以覆盖计算成本,而不是由初创公司承担预训练或强化学习的资本支出。

正如Pranav Reddy提到的,小模型,特别是在特定领域,可能会出人意料地有效。正如我们讨论的公司集群所展示的,产品层既在创造也在捕获价值。打造出色的AI驱动产品是一项具有挑战性的任务。

总的来说,我们与许多实验室持有相同的观点:世界上充满了问题,将通用人工智能(AGI)整合到所有用例中的旅程是漫长的。

第二个话题是价值是流向初创企业还是现有公司。风险投资的原则是投资资本效率高的、增速快,最终价值将会是百亿美元的企业。像法律、医疗保健、国防等领域,VC会认为不是好的市场,没人能在那里赚钱,很难销售,没有预算等等。然而,如果你看看过去一年真正有效率的一些公司,恰恰在这些传统上非显而易见的市场中运营。这让我得出一个更为乐观的观点:AI确实很有用,如果你创造了一种比现有能力便宜几个数量级的新能力,就可以改变购买模式和市场结构。例如,法律行业可能已经很长时间没有购买任何东西了,因为没有值得购买的产品。

我们还思考了上一家伟大的消费公司是什么—可能是Discord或Roblox,这两家公司都拥有庞大的用户基础和极高的用户参与度。现在,随着消费级聊天机器人和下一代搜索的出现,正如Pranav所提到的,我们在社交、媒体生成和游戏领域看到了全新的机会。

最后,关于我们关注的市场,现在有一个广泛的共识:AI允许根据结果和服务进行收费,而不仅仅是软件支出。这是因为AI是在执行工作,而不仅仅是支持工作流程。更进一步,我们认为许多服务存在弹性需求。例如,全球大约有2000万到2500万专业软件开发人员。如果我们将高质量软件的成本降低两个数量级,我们很可能会看到世界上有更多的软件,而不是更少的人从事开发工作。至少我们是这样认为。

关于现有与初创企业竞争的问题,现有企业拥有分销渠道、产品界面和数据,这使得与它们竞争变得徒劳。人们期望它们创造并获取价值,并与客户分享其中的一部分。然而,这种观点只部分正确。虽然现有企业确实拥有分销渠道,但初创企业必须通过更好或更具创新性的产品以及可能不同的商业模式来竞争,以获取新的分销渠道。

关于产品界面和数据的具体细节值得深入理解。这里存在一个强烈的创新者窘境:占主导地位的SaaS公司按席位销售,但如果工作被自动化,席位数量可能会减少。几十年来编写的用于支持特定工作流程(如CRM)的代码,如果工作流程本身发生变化,可能会变得无关紧要。这对现有企业的优势构成了挑战,尤其是在新的用户体验和代码生成方面。

此外,我们从投资组合中得出的一个令人失望的发现是,我们所需的数据往往不可用。例如,在自动化知识工作时,推理轨迹—输入和输出决策—至关重要,但现有企业很少保存这些数据。它们可能拥有包含输出的数据库,但没有完整的上下文。因此,作为初创企业,必须批判性地评估哪些数据真正有助于提升产品质量。

总之,尽管现有企业具有优势,但它们的数据和工作流程可能无法满足创新解决方案的需求。

我们将这一系列变化简称为软件3.0。我们相信它代表了一种全栈的重新思考,使新一代公司能够获得显著优势。变化的速度对初创公司有利。如果地面变成熔岩,那么快速转向对于大公司来说是一个挑战。尽管一些大公司的CEO能力非凡,但他们仍然面临着在全新范式中迅速调动十万人的困难。

市场机会也有所不同。我们感兴趣且规模庞大的市场,可能代表着数万亿美元的价值,而不仅仅是过去二十年的替代软件市场。许多这些公司的商业模式尚不明确,Sierra最近开始讨论按结果收费。基于结果的定价一直是软件领域的圣杯,但实施起来一直很困难。现在,我们正在这一领域做更多的工作。

还有其他商业模式上的挑战。我们的公司在计算上的支出比过去显著增加,尤其是在基础模型提供商方面。他们正在考虑毛利率、数据获取以及在产品开发中需要创造力,而不仅仅是简单地替换过去的工作流程。这可能需要完全摒弃那些工作流程。这是一个不同的开发周期。

在座的许多人可能都写过评估报告,将学术基准与现实世界的评估进行比较,并意识到它们并不一致。我们如何让用户理解这些输出的非确定性,或者确保优雅的失败?这代表了与过去不同的产品开发思维方式。

我们还需要重新考虑基础设施。曾经有一段时间,云提供商和超大规模公司从软件开发者手中接管了这个问题,似乎一切都将由前端开发者处理。然而,我们已不再处于那个时代。我们回到了硬件时代,获取、管理和优化计算能力至关重要。这将显著影响能力和公司的成功。

总之,我们鼓励大家抓住这些变化带来的机遇。这是我们所见过的最大的技术和经济机遇。我们为此投入了超过十年的职业生涯。我们与基础模型公司合作密切,认为他们正在做令人惊叹的工作。他们是优秀的合作伙伴,甚至是我们一些项目的共同投资者。

然而,他们对通用人工智能和安全的关注并不意味着其他领域没有机会。世界非常广阔,我们相信大部分价值将通过解绑和最终的重新捆绑来分配,正如技术周期中经常发生的那样。

我们认为这是一个结构上对初创企业有利的市场,很期待与那些更具雄心的公司合作。这个生态系统比2023年对初创企业更加友好,这正是我们所希望的。

注:本文内容由叮当好记协助生成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值