写在前面
- 算法的实现(代码)以及算法的正确性(和所需的理论知识)已经在括号生成(理论及实现篇)写到,如果你没有看过请先大略浏览一遍,以防直接阅读本篇造成的无上下文的体验。
- LeetCode官方题解对这两种算法的分析不仅有些简略而且不太严谨。
现在以上一篇为基础,对闭合数
和回溯法
做算法复杂度分析。
C n = C 0 C n − 1 + C 1 C n − 2 + ⋯ + C n − 1 C 0 , n ≥ 1 (**) C_n=C_0C_{n-1}+C_1C_{n-2}+\cdots+C_{n-1}C_0,\quad n\ge 1\tag{**} Cn=C0Cn−1+C1Cn−2+⋯+Cn−1C0,n≥1(**)
算法复杂度
- 闭合数(纯递归版)
//部分代码
for (int c = 0; c < n; ++c)
for (String left: generateParenthesis(c))
for (String right: generateParenthesis(n-1-c))
ans.add("(" + left + ")" + right);
这一段循环实际上是翻译了一遍Catalan数的递推式 ( ∗ ∗ ) (**) (∗∗),我们自然可以得到
T g p R e c ( n ) = T g p R e c ( 0 ) T g p R e c ( n − 1 ) + T g p R e c ( 1 ) T g p R e c ( n − 2 ) + ⋅ ⋅ = ⋅ ⋅ + T g p R e c ( n − 1 ) T g p R e c ( 0 ) = ∑ k = 0 n − 1 T g p R e c ( k ) T g p R e c ( n − k − 1 ) \begin{aligned}T_{gpRec}(n) &=T_{gpRec}(0)T_{gpRec}(n-1)+T_{gpRec}(1)T_{gpRec}(n-2)+\cdot\cdot\\ &\phantom{=}\cdot\cdot+T_{gpRec}(n-1)T_{gpRec}(0) \\ &=\sum_{k=0}^{n-1}T_{gpRec}(k)T_{gpRec}(n-k-1)\end{aligned} TgpRec(n)=TgpRec(0)TgpRec(n−1)+T