概率统计分布中的重要定理与分布函数
1. 中心极限定理
中心极限定理为重复测量以提高最终结果准确性的实践提供了理论基础。对于任意分布 (h(x)),其均值为 (\mu),标准差为 (\sigma),该定理指出从该分布中抽取的 (N) 个值 (x_i) 的均值近似服从高斯分布 (N(\mu, \sigma/\sqrt{N})),并且随着 (N) 的增大,近似精度会提高。这一结果非常显著,因为不需要指定分布 (h(x)) 的具体细节,我们就可以对测量值进行“平均”(即使用公式计算均值),并期望精度能有 (1/\sqrt{N}) 的提升,而无需考虑测量设备的具体细节。
中心极限定理能得出如此广泛结论的根本原因在于对 (h(x)) 的一个强假设:它必须有标准差,并且对于较大的 (x),其尾部下降速度必须快于 (1/x^2)。随着更多测量值的组合,尾部会被“截断”,最终(当 (N) 很大时)均值将服从高斯分布。
然而,也存在中心极限定理不适用的情况:
- 柯西分布 :柯西分布没有明确定义的均值或标准差,因此中心极限定理不适用。如果我们从柯西分布中重复抽取 (N) 个值 (x_i) 并计算其均值,这些均值的分布不会遵循高斯分布,而是遵循柯西分布,并且具有无限的方差。如果我们使用测量值的均值来估计位置参数 (\mu),将无法获得中心极限定理所承诺的精度提升。此时,我们需要计算 (x_i) 的中位数和四分位距,它们是柯西分布位置和尺度参数的无偏估计量。
- 均匀分布 :均匀分布甚至没有尾部。如果我们从由均值 (\mu) 和宽度 (W) 描述的均匀分布中重复抽取 (N) 个值 (x_i),它们的均值分布