经典贪心-多设备区间调度

Description
多个调度任务,给出调度任务的起始时间和结束时间,问至少需要多少个设备能完成调度任务,在保证最小设备的情况,要求所有设备运行总时长最短。

每个设备的运行时长:从给这个设备的第一个任务开始计算到这个设备的最后一个任务结束,中间哪怕没有任务也要计算运行时长。

Input
输入的第一行包含一个正整数t(t ≤ 100)​,代表共有t​组输入实例。每组输入实例中,第一行包含一个正整数n(n ≤ 100)​,接下来输入n​行,每一行包含两个正整数l​和r(0 ≤ l < r ≤ 109)​,分别一个调度任务的开始时间和结束时间l​,r​。读入至文件结束为止。

Output
每组实例输出两个正整数,分别代表使用设备的数量,设备运行的总时长,每组实例输出占一行

Sample Input
1
5
1 3
3 6
2 4
5 7
6 9
Sample Output
2 13

思路——如何让设备最少和时间最短
1.把任务开始时间从小到大排序
2.对所有任务进行一次遍历,查询此时是否有设备可以提供服务,没有设备则创建一个设备,有设备则从所有空闲设备中查找一个设备的结束时间与此任务的开始时间最短的进行服务

记录设备的数量以及开始结束时间,最后输出

#include

#include <iostream>
#include<limits.h>
#include <vector>
using namespace std;

class mission {  //任务类 
	public:
		long long start;
		long long end;
};

class machine { //设备 
	public:
		long long start;
		long long end;
};

int cmp(const mission &a, const mission &b) {
	return a.start < b.start;
}

int main() {
	int t;
	cin >> t;
	while (t--) {
		int n;
		scanf("%d", &n);
		mission a[n];
		for (int i = 0; i < n; i++) {
			cin >> a[i].start >> a[i].end;
		}
		sort(a, a + n, cmp);  //根据任务开始时间从小到大排序 
		vector<machine> b;
		long long machine_time = 0; // 设备工作总时间
		machine m1;  //至少需要一台设备,所以先创建 
		m1.start = a[0].start;
		m1.end = a[0].end;
		b.push_back(m1);  //加入设备数组中 
		for (int i = 1; i < n; i++) {
			int flag = 1; // 判断该任务是否被已有的设备运行 
			long long min = INT_MAX;
			int index = 0; //记录任务结束时间与设备结束时间最小值的设备下标 
			for (int j = 0; j < b.size(); j++) {
				if (b[j].end > a[i].start) //说明该设备无法调度该进程,查询下一个设备 
					;
				else { //找到空闲时间最小的设备下标 
					int temp = a[i].start - b[j].end;  
					if(temp < min) {
						min = temp;
						index = j;
					}
					flag = 0; //说明至少有一个设备可以运行该任务 
				}
			}
			if(flag) { //找不到设备运行,创建一个新设备 
				machine m2;
				m2.start = a[i].start;
				m2.end = a[i].end;
				b.push_back(m2);
			} else {
				b[index].end = a[i].end;
			}
 
		}
		for (int i = 0; i < b.size(); i++) {
			machine_time += (b[i].end - b[i].start);
		}
		cout << b.size() << " " << machine_time << "\n";
	}
	return 0;
}
### 贪心算法解决区间调度问题的C语言实现 区间调度问题是经典的优化问题之一,通常可以通过贪心算法来求解。以下是基于贪心算法的C语言实现方法。 #### 实现步骤说明 为了实现区间的最大不重叠数量问题,可以按照以下逻辑编写代码: 1. **输入数据结构定义** 定义一个数组存储每个区间的起始时间和结束时间。 2. **排序操作** 将所有区间按照结束时间从小到大进行排序[^1]。 3. **选择不重叠区间** 遍历排序后的区间列表,每次选取当前最早结束的区间,并跳过与其冲突的所有后续区间[^5]。 #### 示例代码 下面是完整的C语言代码实现: ```c #include <stdio.h> #include <stdlib.h> // 定义区间结构体 typedef struct { int start; int end; } Interval; // 比较函数用于qsort排序 int compare(const void *a, const void *b) { Interval *intervalA = (Interval *)a; Interval *intervalB = (Interval *)b; return intervalA->end - intervalB->end; // 按照结束时间升序排列 } void greedyIntervalScheduling(Interval intervals[], int n) { if (n == 0) return; qsort(intervals, n, sizeof(Interval), compare); // 对区间按结束时间排序 printf("Selected Intervals:\n"); int count = 0; int lastEnd = intervals[0].end; // 记录最后一个被选中的区间的结束时间 printf("[%d, %d]\n", intervals[count].start, intervals[count].end); for (int i = 1; i < n; ++i) { // 遍历剩余区间 if (intervals[i].start >= lastEnd) { // 当前区间与最后选定的区间无交集 lastEnd = intervals[i].end; // 更新记录 printf("[%d, %d]\n", intervals[i].start, intervals[i].end); count++; } } printf("Total selected intervals: %d\n", count + 1); } int main() { // 输入样例 Interval intervals[] = {{1, 3}, {2, 4}, {3, 5}, {6, 7}}; int n = sizeof(intervals) / sizeof(intervals[0]); greedyIntervalScheduling(intervals, n); return 0; } ``` #### 关键点解析 上述代码实现了以下几个核心功能: - 使用`qsort()`函数对区间按照结束时间进行排序。 - 利用贪心策略依次挑选最早的结束时间作为候选区间- 输出最终选出的最大互不重叠区间集合及其总数。 #### 时间复杂度分析 该算法的主要计算开销在于排序阶段,假设共有 \( n \) 个区间,则时间复杂度为 \( O(n\log{n}) \)。遍历过程仅需线性时间 \( O(n) \),因此整体效率较高。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值