ndarray数组使用详解

import numpy as np

一、创建数组(ndarray)

一维数组

np.array[1,2,3]

二维数组

np.array[[1,2,3],[4,5,6]]

指定数组类型

np.array([1,2,3],dtype=np.int8)

二、ndarray属性

属性名属性解释
ndarray.shape数组维度的元组(例:几行几列)
ndarray.ndim数组维数(几维数组)
ndarray.size数组元素数量
ndarray.itemsize一个数组元素的长度
ndarray.dtype数组元素的类型

三、生成数组

1、生成固定范围数组

0、1数组生成

np.ones(shape)  --参数为数组形状

np.ones_like(a)  --参数为参考生成的数组

np.zeros()

np.zeros_like()

从现有数组生成

np.array(a) --深拷贝

np.asarray(a) --浅拷贝

生成等间隔

np.linspace(开始,结束,数量)

np.arange(开始,结束,间隔)

np.logspace(开始,结束,数量) -- 10^x

2、生成随机范围数组

np.random.rand()  -- 返回0,1均匀数组

np.random.uniform(low,hight,size) -- low 开始值,hight 结束值 ,size: 输出样本数目,,例如,                                                               size=(m,n,k), 则输出 m * n * k 个样本

np.random.randint(low,hight,size) -- 随机整数数组 

3、正态分布

u  -- 均值

s^2 -- 方差

S -- 标准差

标准正态分布

f(x) = \frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-u)^2}{2\sigma ^2}}

np.random.randn() -- 标准正态分布

np.random.normal(loc,scale,size) -- loc 均值,scale 标准差,size 形状

np.random.stand_normal(size) -- 返回标准正态分布数组

三、数组切片

先行后列

操作方法操作解释
ndarray.reshape()重新排序
ndarray.resize()重新排序
ndarray.T()转置
ndarray.astype()类型修改
ndarray.tostring()类型修改
np.unique(ndarray)去重

四、数组运算

方法
np.all()全部满足为true
np.any()一个不满足为false
np.where三元运算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值