import numpy as np
一、创建数组(ndarray)
一维数组
np.array[1,2,3]
二维数组
np.array[[1,2,3],[4,5,6]]
指定数组类型
np.array([1,2,3],dtype=np.int8)
二、ndarray属性
属性名 | 属性解释 |
ndarray.shape | 数组维度的元组(例:几行几列) |
ndarray.ndim | 数组维数(几维数组) |
ndarray.size | 数组元素数量 |
ndarray.itemsize | 一个数组元素的长度 |
ndarray.dtype | 数组元素的类型 |
三、生成数组
1、生成固定范围数组
0、1数组生成
np.ones(shape) --参数为数组形状
np.ones_like(a) --参数为参考生成的数组
np.zeros()
np.zeros_like()
从现有数组生成
np.array(a) --深拷贝
np.asarray(a) --浅拷贝
生成等间隔
np.linspace(开始,结束,数量)
np.arange(开始,结束,间隔)
np.logspace(开始,结束,数量) -- 10^x
2、生成随机范围数组
np.random.rand() -- 返回0,1均匀数组
np.random.uniform(low,hight,size) -- low 开始值,hight 结束值 ,size: 输出样本数目,,例如, size=(m,n,k), 则输出 m * n * k 个样本
np.random.randint(low,hight,size) -- 随机整数数组
3、正态分布
u -- 均值
-- 方差
S -- 标准差
标准正态分布
np.random.randn() -- 标准正态分布
np.random.normal(loc,scale,size) -- loc 均值,scale 标准差,size 形状
np.random.stand_normal(size) -- 返回标准正态分布数组
三、数组切片
先行后列
操作方法 | 操作解释 |
ndarray.reshape() | 重新排序 |
ndarray.resize() | 重新排序 |
ndarray.T() | 转置 |
ndarray.astype() | 类型修改 |
ndarray.tostring() | 类型修改 |
np.unique(ndarray) | 去重 |
四、数组运算
方法 | |
np.all() | 全部满足为true |
np.any() | 一个不满足为false |
np.where | 三元运算 |