最近继去年的一篇文章进行了拓展研究开发,大家知道基于INT或GeoToolkit默认自带的Contour或PillarSurfaceData的三维曲面绘制方法,对于很多复杂情况是无法实现的,比如三维空间存在不单调的断棱(有时叫断柱),实际数据是三维空间中的随机散点数据等等,同时,用户需求一般在三维空间中除去显示三维空间格架以外,更重要的是在此格架显示不同研究属性的三维分布和变化情况等等,目前已有的做法是无法满足需求。因此,本文主要在之前文章的基础上,拓展了三维曲面显示交互功能。本文主要基于GeoToolKit/INT的Surface和SurfaceData组件,拓展其数据结构和交互显示功能,基于用户自定义的散点数据,为用户实现了在三维空间下,不同地层属性的灵活显示和切换,有关自定义颜色栏请参考另一篇文章。具体如下。
一、演示效果
1.三维曲面格架+z值控制深度+属性控制颜色栏效果图
2.三维曲面格架+属性控制深度和颜色栏效果图
二、主体核心代码
主要采用VUE+JavaScript+GeotoolKit.JS,充分利用VUE的组件化设计思想,结合elementui的el-dialog组件,以及GeotoolKit.JS的ColorProvider,Surface和SurfaceData组件。具体前端核心代码如下。实现了任意类型曲面数据的三维显示和交互操作等,后续加入性能优化方式,提升散点数据的解析和显示效率。
// 基于散点绘制三维曲面,解析四列数据,地层框架是xyz,value和颜色值用属性A
function createScene3 (divElement,xyzaData,yName) {
const camera = new Vector3(1000, 1000, 45000);
const position = new Vector3(0, 0, 0);
plot = createPlot(divElement, camera, position);
// 获取散点数据
data = getPoints(xyzaData);
createSurface3();
plot.setOptions({'scale': new Vector3(1, 1, 6)});
}
function createSurface3 () {
const surfaceData = new SurfaceData({
'data': {
'x': data['x'],
'y': data['y'],
'z': data['z'],
'values': data['A']
},
'unorderedtriangulation': {
'enable': true,
'enablefiltergaps': filterGaps,
'filtergapsthreshold': filterThreshold
}
});
// 颜色栏的色标用属性数据。
const midValue = data['amin'] + (data['amax'] - data['amin']) / 2;
colorProvider=new DefaultColorProvider({// Set colormap
'values': [data['amin'], midValue, data['amax']],
'colors': ['blue','LightBlue','pink' ]
})
surface = new Surface({
'data': {
'surface': surfaceData
},
'smoothshadingfactor': smoothFactor,
'wireframe': wireFrameMode,
// 'colorprovider':'pink'
'colorprovider': colorProvider,
// 'colorprovider': 'darkred',
'opacity': 0.6
});
console.log('colorprovider=',colorProvider);
plot.getRoot().add(surface);
}
// 根据XYZA数据,设计新的数据结构组织数据,详见result
function getPoints(tableData){
// 获取x/y/z的最大最小值
let xmin=0,xmax=0,ymin=0,ymax=0,zmin=0,zmax=0,amin=0,amax=0;
// 获取xyza数据
let xx=[],yy=[],zz=[],AA=[];
for (let i = 0; i < tableData.length; i++) {
// 传过来的是4列数据组成的字符串,中间用逗号(,)分隔,需要进行拆分。
const temp = tableData[i];
let row = temp.split(',')
xx.push(Math.floor(row[0]));
yy.push(Math.floor(row[1]));
zz.push(Math.floor(row[2])*-1);
AA.push(Math.floor(row[3])*-1);
}
// 获取最大最小值,为了后续的网格化处理用
// ...
// 定义返回数据结构
const result = {
'nullvalue': -9999.25,
'xmin': xmin,
'xmax': xmax,
'ymin': ymin,
'ymax': ymax,
'zmin': zmin,
'zmax': zmax,
'amin': amin,//属性最小值,
'amax': amax//属性最大值
};
let stepx=1500;// 网格大小-x
let stepy=1000;// 网格大小-y
result['x'] = [];
result['y'] = [];
result['z'] = [];
result['A'] = [];
const nbXvalue = result['xmax'] - result['xmin'] + 1;
const nbYvalue = result['ymax'] - result['ymin'] + 1;
for (let y = 0; y < (nbYvalue); y+=stepy) {
for (let x = 0; x < (nbXvalue); x+=stepx) {
let x1=result['xmin'] + x;
let y1=result['ymin'] + y;
let z1=result['nullvalue'];
let A1=result['nullvalue'];
for (let k = 0; k < xx.length; k++) {
// 以网格大小为中心点,用实际散点的z值数据进行赋值填充
...
}
// 只保留有效值,并将其填充到result。
if(z1!=result['nullvalue']){
result['x'].push(x1);
result['y'].push(y1);
result['z'].push(z1);
result['A'].push(A1);
}
}
}
return result;
}