
Python
文章平均质量分 92
hi0_6
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
机器学习实战第六章 决策树
文章摘要 决策树是一种透明且强大的机器学习模型,本文深入解析其核心原理与应用。重点介绍了CART算法如何通过基尼杂质或信息熵指标构建分类与回归树,揭示了决策树作为"白盒"模型在解释性方面的独特优势。文章还详细探讨了max_depth、min_samples_split等关键正则化参数的使用技巧,帮助读者有效避免过拟合问题。最后客观分析了决策树对轴向敏感和高方差的局限性,为后续学习随机森林等集成算法奠定基础。通过掌握这些核心概念,读者将能更自信地在实际项目中应用决策树模型。原创 2025-09-17 12:00:00 · 723 阅读 · 0 评论 -
机器学习实战第五章 SVM
SVM深度解析与实践指南 支持向量机(SVM)是一种强大的机器学习模型,特别擅长处理中小规模非线性数据集。本文深入解析SVM的核心原理与实用技巧: 核心原理:从硬间隔分类到软间隔分类,通过松弛变量和正则化参数C平衡街道宽度与间隔违例。核技巧(多项式核/RBF核)使SVM能高效处理非线性数据。 关键参数: C值:控制模型对训练数据的敏感度,过大易过拟合 gamma(RBF核):决定单个样本影响范围,影响决策边界形状 epsilon(回归):控制街道宽度,影响模型容错度 实践建议: 必须进行特征标准化 通过交叉原创 2025-09-16 12:00:00 · 703 阅读 · 0 评论 -
机器学习实战第四章 线性回归
线性回归是最基础的机器学习模型之一,它试图找到一条直线来最好地拟合数据点。想象一下,你有一堆散落在平面上的点,线性回归的目标就是找到一条直线,使得所有点到这条直线的垂直距离之和最小。原创 2025-09-15 12:00:00 · 535 阅读 · 0 评论 -
机器学习实战第三章 评价模型优劣
摘要: 机器学习分类任务中,单纯追求高精度可能掩盖模型在类别不平衡数据下的真实表现。本文揭示了“精度陷阱”的危害,强调通过混淆矩阵、PR曲线、ROC曲线等多维度评估工具,全面分析模型性能。重点探讨了精度、召回率与F1分数的权衡关系,并针对多分类场景提出实用策略。文章指出,评估指标的选择需结合业务需求,例如医疗诊断更关注召回率,而推荐系统侧重精度。PR曲线在类别不平衡时更具参考价值,而ROC曲线适合均衡数据。这些实战经验帮助开发者构建更鲁棒、更符合实际需求的分类模型。原创 2025-09-14 12:00:00 · 661 阅读 · 0 评论 -
流畅的Python(一) Python数据模型
摘要 Python的特殊方法(如__init__、__add__、__len__等)是Python数据模型的核心,它们赋予自定义对象与内置类型一致的行为表现。这些双下划线方法由解释器自动调用,实现Python的"鸭子类型"机制。本文介绍了三类重要方法:1)运算符重载方法使对象支持数学运算;2)__repr__和__str__分别提供对象的开发调试和用户友好显示;3)__bool__定义对象的真值判断逻辑。此外,抽象基类作为正式接口声明,帮助维护大型系统的行为一致性。合理使用这些特性可以编原创 2025-09-13 13:52:41 · 792 阅读 · 0 评论 -
流畅的Python(二) 丰富的序列
摘要:Python序列是数据处理的核心,分为容器序列(如list、tuple)和扁平序列(如str、bytes),以及可变与不可变序列。列表推导式和生成器表达式能高效构建序列,前者简洁优雅,后者内存高效。元组不仅是不可变列表,还可作为无字段名记录使用,其"浅不可变"特性需特别注意。理解序列的底层机制有助于编写更Pythonic、更高效的代码,避免常见陷阱。原创 2025-09-12 20:31:31 · 991 阅读 · 0 评论