Tensorflow易错点(2)---多层RNN的定义

博客介绍了在构建RNN时,特别是使用LSTM单元时,一个常见的错误会导致维数不匹配的错误。错误在于未正确初始化和堆叠多层LSTM单元。正确的方法是为每层创建一个独立的LSTMCell实例,并将它们放入列表中,然后使用MultiRNNCell来堆叠这些单元。这个纠正可以确保多层LSTM的正确构建和运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以RNN中的lstm为例:
首先说一个普遍的错误方式,该方式会引起维数不匹配报错!

# 错误方式!!!
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units)
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range(layers_nums)])

正确的多层lstm的定义

lstm_cell = [tf.nn.rnn_cell.BasicLSTMCell(num_units) for _ in range(layers_nums)]
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cell)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值