python使用arima进行预测predict函数

本文通过实例展示了如何使用ARIMA模型对Python时间序列数据进行建模、拟合和预测,包括模拟历史值、生成未来3步预测,并通过可视化清晰呈现过程。重点介绍了如何使用`pandas`, `ARIMA`和`matplotlib`进行数据处理和结果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

y = pd.Series([1,2,1,2])
arima = ARIMA(y, order=(0, 0, 1)).fit()
print(arima.summary())
plt.figure()
plt.plot(y)
plt.plot(arima.fittedvalues, color='red')
plt.plot(arima.forecast(3), color='blue')
plt.legend()
plt.show()

y的index从0到3,arima.predict(0,3) == arima.fittedvalues,就是模拟过去的值。
如果要预测未来3个窗口大小,可以使用arima.forecast(3)或者arima.predict(3,6)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值