自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(262)
  • 收藏
  • 关注

原创 希尔排序(缩小增量排序)面试专题解析

希尔排序是插入排序的高效改进版本,通过分组插入排序逐步缩小增量实现优化。其核心思想是先宏观调整再微观调整,时间复杂度介于O(nlogn)到O(n²)之间,空间复杂度为O(1),属于不稳定排序。算法效率关键取决于增量序列选择,如Shell原始序列、Hibbard序列等。代码实现展示了Java、Python、Golang版本,并可优化增量序列或结合标准插入排序。相比简单插入排序,希尔排序通过大步长预处理显著提升效率,特别适合中等规模数据(数千到数万)和内存受限环境,在嵌入式系统等场景具有实用价值。

2025-07-28 16:29:24 274

原创 插入排序及其时间复杂度分析

摘要: 插入排序是一种基于比较的简单排序算法,通过构建有序序列逐步插入未排序元素实现排序。其核心步骤为:取出元素,在已排序序列中从后向前扫描定位,插入到正确位置。时间复杂度:最佳O(n)(已排序),最坏O(n²)(逆序),平均O(n²);空间复杂度O(1),属于原地稳定排序。算法在小规模或基本有序数据中表现优异,常作为高级排序的补充(如Java对小子数组的优化)。优化方向包括二分查找定位(减少比较次数)和希尔排序(分组插入)。代码实现简洁(文中提供Java/Python/Golang示例),适用于面试基础考

2025-07-16 10:47:01 781

原创 Hugging Face

2025-07-06 10:28:11 121

原创 机器学习框架PyTorch

机器学习

2025-07-04 16:28:34 658

原创 冒泡排序及其优化方式

本文介绍了冒泡排序算法的基本概念、实现方式及多种优化策略。冒泡排序通过相邻元素比较和交换将较大元素逐渐"浮"到数列末端,基础实现时间复杂度为O(n²)。文章详细展示了Java、Python和Golang的基础实现代码,并提出了三种优化方法:提前终止优化、记录最后交换位置优化和双向冒泡排序(鸡尾酒排序),分析了各种优化方式的时间复杂度表现。最后指出冒泡排序适合小规模或基本有序数据,在实际工程中多用于教学目的,建议优先使用语言内置的高效排序算法。

2025-07-03 18:53:19 821

原创 堆排序实现及复杂度分析

堆排序是一种高效的比较排序算法,基于二叉堆数据结构实现。它通过构建最大堆(升序排序)或最小堆(降序排序),将堆顶元素与末尾元素交换并调整堆结构,重复此过程直至排序完成。该算法时间复杂度为O(nlogn),空间复杂度O(1),属于原地排序但不稳定。文章详细介绍了堆排序原理、实现步骤(包括Java/Python/Golang代码示例)、复杂度分析及优化方法(非递归实现、小数据优化等),并对比了堆排序与快速排序的特点,指出其适用于内存受限、需要稳定性能或获取前k个元素的场景。堆排序不仅是理解排序算法的重要范例,也

2025-06-30 10:10:39 298

原创 寻找数组中第 K 大的数

【摘要】本文探讨了在未排序整数数组中查找第k大元素的三种方法:1)排序法(O(nlogn)),直接排序后取第n-k位元素;2)快速选择算法(平均O(n)),基于快速排序的随机化分区策略;3)堆方法(O(nlogk)),使用最小堆维护前k大元素。快速选择算法最具效率优势,堆方法适合数据流场景。文章提供了Java/Python/Golang的实现代码,并比较了各方法的复杂度与适用场景,最后给出了面试技巧和扩展问题建议,如处理重复元素和数据流情况。

2025-06-26 15:21:07 358

原创 数组中出现次数超过一半的数字

摘要:本文介绍了寻找数组多数元素(出现次数超n/2)的三种解法。哈希表法(O(n)时间/空间)通过计数统计;排序法(O(nlogn)时间)取中间值;最优的Boyer-Moore投票算法(O(n)时间,O(1)空间)利用抵消原理。给出了Java/Python/Go实现代码,对比了性能,并讨论了边界案例和扩展问题。建议面试时优先解释Boyer-Moore算法,体现对问题特性的理解。

2025-06-26 15:20:14 272

原创 工厂模式深度解析:工厂方法 vs 抽象工厂

工厂方法与抽象工厂模式对比摘要(138字): 工厂方法模式专注于单一产品创建,通过子类化实现对象实例化延迟,适合产品结构扩展场景。抽象工厂模式强调创建产品族(多个关联产品),提供系列对象创建接口,但添加新产品需修改所有工厂类。核心区别在于:工厂方法处理单个产品等级结构,抽象工厂管理多个相关产品等级。实际开发中,简单需求用工厂方法,复杂产品族用抽象工厂,二者可结合使用(如抽象工厂内部采用工厂方法)。现代语言中,该模式常结合依赖注入框架优化实现。

2025-06-25 11:50:10 287

原创 单例模式实现方式与线程安全方案

《单例模式设计与实现解析》摘要:单例模式确保类只存在一个实例,提供全局访问点并避免资源浪费。本文详细介绍了四种实现方式:饿汉式(类加载即初始化)、懒汉式(延迟加载需处理线程安全)、静态内部类(线程安全懒加载)、枚举(Java防反射攻击最佳方案)。对比分析了各方案的线程安全性、性能及适用场景,并探讨了防御反射/序列化攻击、分布式环境实现等高级话题。最后总结了面试要点,建议根据场景选择实现方式,现代开发中优先考虑依赖注入管理的单例模式。

2025-06-25 11:34:07 851

原创 快速排序(快排)实现及原理

快速排序摘要:快速排序是一种高效的分治排序算法,平均时间复杂度O(nlogn)。通过选择基准值将数组分为左右两部分(左边小于基准,右边大于基准),并递归处理。核心是分区操作,常用优化包括随机化基准选择、三数取中和小数组切换插入排序。虽然是不稳定排序,但因其原地操作和缓存友好性,实践性能优异。文章详解了Java/Python/Golang的实现代码,分析了时间复杂度(最坏O(n²)),并介绍了三向切分处理重复元素的扩展实现。快速排序在标准库中常与其他排序算法结合使用以达到最佳性能。

2025-06-24 14:20:50 675

原创 数组中重复的数字-数据结构

摘要:题目要求在0~n-1范围内的数组中找出任意重复数字。最优解法是原地交换法(O(n)时间,O(1)空间):通过交换元素到对应下标位置,若冲突则发现重复。另有哈希表法(O(n)空间)较直观但不符合要求。代码实现展示了Java/Python/Golang版本,均包含两种解法。测试需考虑重复在开头/结尾、最小数组等情况。面试建议先问是否允许修改数组,从哈希解法过渡到最优解,并主动分析复杂度。扩展问题包括不修改数组找重复、统计所有重复等。

2025-06-23 11:25:28 293

原创 软件工程的最终目标是什么?

软件工程的本质是运用系统化方法在质量、成本与时间约束下交付高价值软件。其核心包括:工程化方法论(如CMMI、DevOps)、量化管理(代码行数/缺陷密度等指标)、架构治理(微服务/分布式系统)和质量保障体系。关键目标在于平衡技术卓越性与商业可行性,通过价值流映射和ROI模型实现商业转化。面试时应结合STAR法则展示理论落地能力,突出技术债务治理等实战经验。

2025-06-22 06:31:14 308

原创 单体架构、微服务架构和分布式架构的区别

单体架构所有功能(UI层业务逻辑数据访问)打包为单一部署单元通常使用单一技术栈开发(如Spring Boot、Django等)共享单一数据库实例进程内通信(方法调用)关键结论:单体架构适合业务简单、团队规模小的项目初期,具有开发部署简单的优势,但会随着业务增长面临扩展性瓶颈架构选择本质是权衡的艺术,需要综合考虑团队能力、业务阶段和技术成本三个维度实际面试中建议采用STAR法则Situation:描述业务背景Task:面临的架构挑战Action:采取的具体措施Result。

2025-06-20 09:17:49 52

原创 什么是软件架构?和系统设计有何区别?

软件架构与系统设计比较 软件架构是系统的高层结构,包括组件关系、架构原则和质量属性实现方案(IEEE1471标准)。它属于战略决策,影响70%以上系统成本。系统设计则将需求转化为实现方案,关注模块划分、接口设计等具体实现。核心区别在于:架构是高层抽象("做什么"),设计是中低层实现("怎么做");架构在需求初期确定,设计可迭代演进;架构决策影响全系统,设计决策限于局部模块。两者相辅相成:架构选择正确组件,设计正确实现组件。

2025-06-19 10:30:52 966

原创 如何挂载远程目录?(sshfs、nfs)

在企业级Linux环境中,挂载远程目录是常见的需求,主要用于分布式存储数据共享和远程协作。SSHFS(基于SSH的文件系统)和NFS(网络文件系统),涵盖原理、配置、优化及安全实践。面试官可能追问"如何优化NFS的读写性能?答:调整rsizewsize(建议8192以上)、启用noatime、使用hard挂载。"SSHFS断开后如何自动恢复?答:使用参数,结合systemd的Automount功能。"NFS如何实现ACL控制?答:服务端配置时使用anonuidanongid。

2025-06-18 08:09:01 746

原创 可行性分析详解:概念与分类-软件工程

可行性分析是通过系统评估技术、经济、法律等五大维度的可实现性(技术成熟度、ROI测算、合规审查等),为项目决策提供依据的关键流程。采用SWOT、蒙特卡洛模拟等工具,可量化风险概率(如识别30%-50%盲目投资风险),重点解决"技术是否可用"(如区块链TPS限制)、"投入是否值得"(成本效益分析)、"实施是否合规"等核心问题,有效降低项目失败率。分析结果需包含具体数据支撑(如3.75年回收期)和备选方案对比,最终输出可行性研究报告作为决策基准。

2025-06-17 10:22:18 573

原创 为什么 LLM 会出现幻觉(Hallucination)?

大模型幻觉(Hallucination)指生成错误或虚构内容的技术现象,主要表现为编造事实、错误关联等。其核心成因包括:1)概率生成机制中采样策略的随机性;2)训练数据存在知识缺口或噪声;3)模型架构缺乏事实验证机制。当前解决方案涵盖知识增强训练、约束解码技术(如LogitsProcessor)及生成后验证(如搜索引擎核查)。研究显示,完全消除幻觉仍具挑战性,但通过混合方法(如RAG结合RLHF)可显著降低发生率。该问题反映了生成式AI在可信度与创造性之间的根本张力。

2025-06-16 10:28:18 314

原创 什么是敏捷中的迭代(Iteration)和 Sprint?

敏捷开发中的迭代与Sprint对比分析 迭代是敏捷开发的核心实践,将项目分解为固定周期(1-4周),每个周期完成需求分析到测试的全流程,产出可交付的产品增量。Scrum框架中的Sprint是迭代的特殊形式,具有更严格的约束:固定时间盒(2-4周)、强制产出符合完成标准的产品增量、期间目标不可变更。主要区别在于:Sprint包含每日站会等专属实践,要求更稳定的节奏和更严格的变更控制。高级实践中,团队可优化迭代长度,采用Sprint火车等模式协同开发。面试时应明确区分概念,强调Scrum的特殊约束。

2025-06-15 08:37:08 584

原创 什么是用户故事(User Story)?如何编写?

摘要:用户故事是敏捷开发中描述需求的工具,采用"角色-功能-价值"模板(As a [role], I want [feature], so that [benefit]),强调用户视角和持续对话。优质用户故事应符合INVEST原则,包括独立性、可测试性等特征,并通过故事拆分技术处理复杂需求。验收标准采用Given-When-Then格式,用户故事地图可帮助可视化需求优先级。需避免技术语言描述、故事过大等常见错误,实践中常用Jira等工具管理故事,Cucumber等工具验证需求。(149字

2025-06-13 16:48:08 543

原创 Scrum 的三个角色及其职责详解

Scrum框架的三大核心角色包括产品负责人(PO)、ScrumMaster和开发团队。PO负责最大化产品价值,管理需求优先级;ScrumMaster确保流程执行,移除团队障碍;开发团队跨职能协作,交付可工作软件。三者的协作遵循:PO定"做什么",团队定"怎么做",ScrumMaster确保流程正确。理解角色职责边界是成功实施Scrum的关键,需平衡业务与技术需求,促进自组织和持续改进。这些角色互动构成了Scrum敏捷开发的基础运作模式。

2025-06-13 12:23:47 960

原创 Position Embedding 有哪些方式?

本文系统介绍了Transformer模型中位置编码(PositionEmbedding)的机制与方法。位置编码可分为绝对位置编码(可学习/正弦)和相对位置编码(Shaw/RPR/RoPE/ALiBi)两大类,各自在灵活性、外推性、计算效率等方面存在差异。关键点包括:位置编码解决了Transformer的排列不变性问题;相对位置编码更适合长序列建模;RoPE和ALiBi成为当前大模型的主流选择。文章还对比了不同方法优劣,并针对面试常见问题提供了技术解答,最后给出了不同场景下的最佳实践建议。

2025-06-11 19:23:48 708

原创 AI大模型专栏

python基础教程http库requestsWeb框架Flask爬虫框架Beautiful SoupWeb框架FastAPI数据分析NumPy数据分析Pandasmatplotlib深度学习框架TensorFlow机器学习框架PyTorch最流行的NLP和多模态AI生态系统一个 低代码 AI 应用开发平台一个多功能的智能体(Agent)框架最流行的智能体开源框架基于 GPT模型的开源自动化系统结合信息检索和生成技术的深度学习多代理协作的大语言模型(LLM)框架微软 (Microsoft)开源的深度学习优化

2025-06-11 15:50:10 331

原创 敏捷开发与传统开发的主要区别

敏捷开发与传统开发对比摘要(150字) 敏捷开发与传统开发在理念和流程上存在显著差异。敏捷基于《敏捷宣言》四大价值观,强调快速迭代(2-4周Sprint)、持续交付可工作软件和拥抱变化,采用用户故事和动态产品待办列表管理需求。传统开发(如瀑布模型)则要求前期完整规划,阶段式推进并通过文档冻结需求。团队结构上,敏捷采用跨职能自组织团队,传统则是职能分工的层级管理。质量方面,敏捷推行测试驱动和全员负责制,传统集中于后期测试。敏捷适合需求多变的创新项目,传统更适合需求明确的强合规领域。实际选择需评估项目特性,二者

2025-06-10 10:16:12 803

原创 软件工程面试题:Scrum 的三个角色及其职责详解

Scrum框架定义三大核心角色:产品负责人(PO)负责产品价值与需求优先级;ScrumMaster作为流程教练,移除障碍并促进团队改进;跨职能的开发团队自组织完成产品交付。三者分工明确又紧密协作:PO决定"做什么",团队决定"怎么做",ScrumMaster确保流程高效运转。成功实施Scrum的关键在于理解角色边界与协作模式,如通过每日站会、Sprint评审等仪式保持同步,平衡需求变更与技术债务。这些角色互动机制既是Scrum落地的核心,也是敏捷面试的重点考察内容。

2025-06-10 10:01:41 634

原创 Linux 如何查看端口是否被占用?(netstat、ss)

Linux系统查看端口占用情况的专业指南 摘要:本文介绍了Linux系统中检查端口占用的两种主要方法:传统工具netstat和现代工具ss。通过对比分析,ss工具在性能上具有明显优势(速度快10倍以上),已成为推荐方案。文章详细讲解了基础查询命令、高级参数使用、专业排查技巧(如BPF过滤器和网络命名空间检查),并提供了企业面试常见问题和最佳实践建议。特别强调在生产环境中应优先使用ss工具,并养成检查进程关联的习惯,以有效解决服务部署、故障排查和安全审计中的端口冲突问题。

2025-06-10 08:19:33 926

原创 如何挂载远程目录?(`sshfs`、`nfs`)

在企业级Linux环境中,挂载远程目录是常见的需求,主要用于分布式存储数据共享和远程协作。SSHFS(基于SSH的文件系统)和NFS(网络文件系统),涵盖原理、配置、优化及安全实践。更多面试题:https://duoke360.com/tutorial/path/interview面试官可能追问“如何优化NFS的读写性能?答:调整rsizewsize(建议8192以上)、启用noatime、使用hard挂载。“SSHFS断开后如何自动恢复?答:使用参数,结合systemd的Automount功能。

2025-06-10 08:17:57 938

原创 grep命令深度解析与管道实战指南

(Global Regular Expression Print) 是Linux/Unix系统中功能最强大的文本搜索工具之一,其主要功能是在文件中搜索包含特定模式的行。核心价值:grep能够快速过滤和提取文本信息,是Linux系统管理员和开发人员的必备工具。

2025-06-10 07:12:45 989

原创 SQL 查询慢的常见原因分析

面试提示:回答SQL性能问题时,建议结合和三个维度展开,展现系统性思维。

2025-06-09 15:25:08 384

原创 数据库和SQL面试题

数据库核心知识点摘要(150字): 本文涵盖数据库核心概念与优化策略,包括:1) 键约束(主键与唯一键区别);2) 索引机制(聚簇/非聚簇索引原理、覆盖索引优势、最左前缀原则);3) 事务处理(ACID特性、隔离级别与并发问题解决);4) 锁机制(悲观/乐观锁、行锁/表锁);5) 架构设计(分库分表策略、读写分离方案);6) 性能优化(EXPLAIN解析、慢SQL排查、索引失效场景);7) 特殊对象(视图、存储过程、触发器);8) 查询优化(JOIN类型差异、子查询处理、分页性能);9) 高可用方案(主从复

2025-06-09 11:44:11 624

原创 操作系统面试题

2025-06-08 12:31:37 367

原创 死锁的四个必要条件

*死锁(Deadlock)**是指多个进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,导致这些进程或线程都无法继续执行下去。关键结论:死锁是并发系统中必须避免的严重问题,会导致系统资源浪费和性能下降。核心要点:理解并牢记这四个必要条件(互斥、占有等待、非抢占、循环等待)是分析和解决死锁问题的基础。在实际系统设计中,通常采用组合策略来预防和避免死锁。能准确陈述四个条件能举例说明每个条件了解至少两种死锁处理策略准备相关项目经验(如遇到过的死锁问题及解决方法)

2025-06-07 15:27:49 697

原创 什么是上下文切换?代价在哪里?

监控vmstat中的cs字段在低延迟系统中考虑无锁设计理解C10K问题的本质就是上下文切换瓶颈最后记住Linus Torvalds的名言:"线程是邪恶的"(Threads are evil),这正反映了对上下文切换代价的深刻认知。操作系统 - 多课网,360度全方位IT技术服务站!

2025-06-06 15:26:04 609

原创 进程与线程的区别

进程与线程的核心区别在于资源分配和执行特性。进程作为独立资源单元拥有隔离的内存空间,创建开销大但稳定性高;线程共享进程资源,切换成本低但存在安全隐患。技术实现上,现代操作系统采用1:1线程模型,Linux通过轻量级进程实现线程。应用选择需权衡任务类型:CPU密集型宜用多进程(如Python规避GIL),I/O密集型适合多线程。典型场景包括Chrome的多进程架构和Nginx的多线程模型,实际开发中常采用混合模式。深入理解需结合同步机制和特定语言特性(如JVM线程模型)。

2025-06-06 10:46:18 399

原创 Hugging Face基础入门

2025-06-06 10:40:47 208

原创 机器学习框架PyTorch

2025-06-06 10:15:20 1034

原创 Golang基础教程

2025-06-06 10:12:22 954

原创 MySQL 的 redo log 和 binlog 区别?

MySQL的redo log和binlog主要区别:1) 层级不同 - redo log是InnoDB引擎层的物理日志,binlog是MySQL Server层的逻辑日志;2) 用途不同 - redo log用于崩溃恢复保证事务持久性,binlog用于主从复制和数据归档;3) 写入机制不同 - redo log循环写入,binlog追加写入。二者通过两阶段提交机制保证一致性,建议生产环境配置innodb_flush_log_at_trx_commit=1和sync_binlog=1确保数据安全。redo l

2025-06-05 15:16:57 795

原创 什么是数据字典?有哪些元数据?

数据字典是数据库核心组件,存储描述数据结构的元数据(Metadata)。主要包含三类元数据:1)结构型(表定义、索引、视图);2)管理型(表空间、权限);3)行为型(统计信息、执行计划)。现代应用扩展到数据血缘分析和分布式场景。技术实现上分为与DBMS集成的主动字典和独立的外部被动字典。访问时需注意性能影响,可通过只读副本或专门工具获取元数据。数据字典是数据库管理、性能优化和合规审计的基础设施。

2025-06-05 14:30:09 958

原创 什么是数据倾斜?如何优化?

数据倾斜是大数据处理中的常见问题,指数据分布不均导致某些节点负载过高。主要表现为Join、GroupBy等操作时少数节点处理大量数据。根本原因包括数据固有特性(如热点用户)和分区策略缺陷。优化方案分三个阶段:预处理阶段可采用加盐、预聚合等方法;执行阶段调整并行度参数或采用两阶段聚合;架构层面优化分区设计和资源分配。检测工具包括Spark UI和Hive日志,需根据具体场景组合多种优化手段。面试时应系统分析问题,结合业务场景给出量化解决方案。

2025-06-05 14:22:38 1175

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除