PX4 悬停油门预估算法

本文探讨了在动态状态估计中如何通过自适应调整噪声协方差来优化PX4悬停油门的参数估计。作者提到使用AEKF处理噪声驱动的油门更新,并在Matlab中展示了关键的更新算法,包括残差滤波和测量噪声更新的过程,特别关注了R矩阵的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关论文:

Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation

相关资料:

悬停油门的参数估计方法_px4悬停油门-CSDN博客

大概思路(ps:遗忘了很多细节):

        1、油门更新为噪声驱动,其次由加速度计算悬停油门;

        2、PX4使用的是AEKF,自适应卡尔曼滤波。

问题发现:

        自己虚拟的油门、加速度数据,测试过程中,加速度计相关的R矩阵会先增大再收敛。

 Matlab中关键更新部分实现:

    % updateLpf(residual, signed_innov_test_ratio)
    alpha = dt / (lpf_time_constant + dt);
    residual_lpf = (single(1) - alpha) * residual_lpf + alpha * residual;
    signed_innov_test_ratio_lpf = (single(1) - alpha) * signed_innov_test_ratio_lpf + alpha * signed_innov_test_ratio;
    
    % updateMeasurementNoise(residual, H)  
    beta = dt / (noise_learning_time_constant + dt) ;
    res_no_bias = residual - residual_lpf;
    P = state_var;
    acc_var = (single(1) - beta) * acc_var  + ...           % 更新R矩阵
                beta * (res_no_bias * res_no_bias + H * P * H);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值