机器学习该如何学

1.AI时代首选Python

        Python虽然是脚本语言,但是因为容易学,迅速成为了科学家的工具(MATLAB也能科学计算,但是软件要钱,而且很贵),从而积累了大量的工具库、架构。人工智能涉及大量的数据计算,用Python是非常自然且简单高效的。

        Python有非常多优秀的深度学习库可用,现在大部分深度学习框架都支持Python。Facebook公司开源了PyTorch之后,Python作为AI时代头牌语言的位置基本确立了。

        当你掌握了Python基本语法之后,需要再花一点时间去学习处理数据与操作数据的方法,熟悉一下Pandas、Numpy、Matplotlib和scikit-learn这些工具包的使用方法。

1.1 Pandas     

       Pandas是一个开源的、强大的Python数据分析工具库,它提供了高性能、易用的数据结构和数据分析工具。Pandas的主要数据结构是Series(一维数组)和DataFrame(二维标记数组),它们使得数据操作和分析变得既简单又直观。

主要功能

  • 数据结构:提供Series和DataFrame两种主要的数据结构,用于存储和操作数据。
  • 数据操作:包括索引、切片、筛选、合并、分组等操作,支持复杂的数据处理需求。
  • 数据清洗:处理缺失数据、重复数据等,确保数据的准确性和完整性。
  • 数据读写:支持多种数据格式的读写,如CSV、Excel、SQL数据库等,方便数据的导入和导出。
  • 时间序列数据:提供强大的时间序列支持,方便对时间相关的数据进行分析。
  • 数据可视化:虽然Pandas本身不直接提供绘图功能,但它可以与其他数据可视化库(如Matplotlib和Seaborn)无缝集成,帮助创建各种类型的图表和图形。

1.2 NumPy

       NumPy是Python的一个开源数值计算扩展库,主要用于对大量数据进行高效存储和计算。它是许多其他数据科学库(如Pandas和Scikit-learn)的基础。

主要功能:

  • 多维数组:提供多维数组对象(称为ndarray),用于存储和操作数据。
  • 数学函数:包括各种数学函数,如三角函数、指数函数等,支持复杂的数学运算。
  • 线性代数:提供线性代数运算,如矩阵乘法、求逆等,满足科学计算和工程领域的需求。
  • 随机数生成:包括各种随机数生成函数,用于模拟和测试等场景。
  • 数组操作:支持数组的形状调整、切片、索引、广播等高级操作,提高数据处理效率。

1.3 Matplotlib

        Matplotlib是Python的一个2D绘图库,它提供了丰富的绘图功能和灵活的绘图选项,是Python数据科学生态系统中最受欢迎的绘图库之一。

主要功能:

  • 图表类型:可以绘制各种类型的图表,包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hl026

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值