yolov5环境配置过程、问题及解决办法

本文详细记录了作者在配置Yolov5环境时遇到的问题,包括Anaconda环境的设置、Pytorch版本的选择、labelimg的使用、xml文件转换、数据集划分以及pip安装过程中遇到的包兼容性问题,如pycocotools、werkzeug和tensorboard。作者提供了相应的解决办法,包括安装特定版本的包和修复bug,为读者提供了一步步的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

大家好,由此开始我的第一篇博客,也是我机器语言学习的第一篇博客。我于2023年6月底进行了yolov5的环境配置,在此之前我没有python基础和数学基础,因为在准备期末考试,现在才完成环境的配置,我完全是照着这位 大佬博客首页做的,但是配置过程中,出现了各种问题,我也是各种解决,下面我会罗列我出现的问题和自己的一些理解和解决办法。(需说明:每个人遇到的情况是不一样的

过程及问题

首先出现这些问题的原因是很多包和环境更新的缘故,导致原本yolov5的代码与其不适配,解决方法是更新代码或者下载原始版本的包。

环境依赖部分

我跟着大佬的这篇 博客完成了Anaconda的下载和其他环境的配置。在过程我遇到的唯一问题就是,关于2023年这款新版的Pycharm他的选择环境的方式不太一样。这里只需要在那个界面选择pytorch即可。环境配置
我这里只做了pytorch没有做paddle,所以只需要再pytorch下创建一个test1.py,将这段代码复制粘贴,运行即可。

import torch
print(torch.cuda.is_available(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值