在Jetson TX2开发套件上使用TensorRT7.1.0加速YOLOv4

前言

记录一下最近一两天的简单工作,我在把TX2开发套件刷机、安装最新的JetPack后,跑了跑TensorRT官方给的UFF-SSD示例,然后又把SSD的骨架网络换成轻量级的MobileNetv2,运行发现速度倒是非常不错,平均在20FPS以上,但精度嘛就比较抱歉了,在行人、车辆检测这种常规任务下性能表现得不如人意。当然主要原因是由于没有用特定场景的数据集进行训练微调,不过精度低的小体量模型确实不适合这类任务。于是我开始尝试在TX2上运行YOLOv3和YOLOv4,图个方便,我没有自己从头写代码,而是尝试在GitHub上找直接能用的代码进行测试。简单看了一下,GitHub上开源的支持在TX2上跑的仓库主要分为两大类:一是直接使用onnx转换darknet的YOLO模型为onnx格式,然后通过TensorRT加速后运行,无需TensorFlow、PyTorch等深度学习框架,典型的有:

二是使用PyTorch、TensorFlow等框架,先将darknet的YOLO模型进行转换,接着导出到onnx或者uff格式,最后经过TensorRT加速后运行,典型的有:

我本着几个项目总有一两个能直接跑起来的想法,从

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值