
人工智能
hndxzcm
010100101000010111010101010100010100010111110010001001010100101010100010100101010100101001010010101010110100101010101001001010100001010101010101001010101001010010100101001010010101010100101010101001000100101010101001010010101001000101010101010101010101010100101011101010101010010101010010101010010101
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能一种现代化学习方法——学习笔记(13章)
第13章——不确定的量化人工智能一种现代化的学习方法(第3版)学习笔记。 13.1不确定环境下的行动 13.2基本概率符号 13.3使用完全联合分布进行推理 13.4独立性 13.5贝叶斯规则及其应用 13.6重游Wumpus世界 13.7本章小结 文献与历史注释 13.1不确定环境下的行动 决策理论 = 概率理论 + 效用理论 决策理论基本思想: 一个Agent是理翻译 2017-06-06 23:34:49 · 4205 阅读 · 0 评论 -
模拟退火算法求解旅行商问题
一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。 爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论转载 2017-06-14 21:55:19 · 960 阅读 · 0 评论 -
机器学习——k-近邻算法(手写字识别)
kNN算法在简单二维数据上计算时:d=根号((x0-x)^2 -(y0-y)^2). 这里被推广到1024维,将32*32二进制图片当成1*1024的向量。计算上和二维是一样的。 缺点是计算量太大了。 一、数据集 手写字图片被保存为32*32的二进制文件: 训练文件trainingDigits有1900多个,测试文件testDigits有900...原创 2018-03-07 16:41:22 · 1434 阅读 · 0 评论