windows系统本地部署DeepSeek-R1全流程指南:Ollama+Docker+OpenWebUI

本文将手把手教您使用Ollama+Docker+OpenWebUI三件套在本地部署DeepSeek-R1大语言模型,实现私有化AI服务搭建。

一、环境准备

1.1 硬件要求

CPU:推荐Intel i7及以上(需支持AVX2指令集)

内存:最低16GB,推荐32GB+ (其实内存8GB也可以)

显卡:非必需,但使用NVIDIA GPU可加速(需CUDA 11.8+)

存储:至少20GB可用空间

1.2 系统要求

操作系统:Linux(Ubuntu 22.04推荐)/ Windows WSL2 / macOS 12+

Docker版本:24.0+

Python版本:3.10+

二、安装部署流程

2.1 下载安装ollama https://ollama.com/

Ollama 是一个用于运行和管理 AI 模型的开源平台,特别是在本地环境中使用 AI 模型。它旨在通过简化本地部署和管理 AI 模型的过程,使开发者能够更容易地在自己的机器上运行各种大型语言模型(LLMs)。
在这里插入图片描述

在这里插入图片描述

2.2检查ollama是否安装成功

cmd命令,然后输入ollama如果出现以下内容则表示ollama安装成功

ollama

在这里插入图片描述

2.3 根据自己的电脑情况选择模型,这里为了快速演示选择了一个最小的模型1.5b的,点击右边复制命令。

这里注意,如果下载速度变慢了可以ctrl+c停止后重新输入命令后回车,速度会变快

ollama run deepseek-r1:1.5b

在这里插入图片描述
在这里插入图片描述

2.4安装完成效果图

使用命令:到这里基本的就算完成了就可以使用了


                
### DeepSeek 本地部署Ollama 和 ChatBoxAI 的集成 #### 安装准备 为了成功完成 DeepSeek本地部署并实现其与 Ollama 及 ChatBoxAI 的集成,需先准备好必要的软件环境。这包括但不限于 CUDA、cuDNN 环境配置[^1]。 #### 下载模型 前往 Ollama 官方网站 (https://ollama.com/library/deepseek-r1:8b),下载所需的 `deepseek-r1` 模型文件[^2]。 #### 配置服务器端 通过命令行工具拉取 Docker 映像来设置 DeepSeek 运行所需的服务容器。确保按照官方文档中的指导进行操作,以使服务能够正常启动并运行于本地环境中[^3]。 ```bash docker pull ollama/deepseek-r1:latest ``` 对于 Windows 用户来说,在执行上述步骤前还需确认已正确安装适用于 Windows 平台版本的 Docker Desktop 应用程序,并开启 WSL2 支持功能以便更好地兼容 Linux 基础架构下的应用实例化需求。 #### 客户端 OpenWebUI 设置 根据提供的保姆级教程指南,继续完成客户端部分——即 OpenWebUI ——的相关设定工作。此环节涉及 Web 接口页面自定义调整等内容,旨在提供更加友好便捷的人机交互体验方式。 #### 实现文件和图片上传功能 针对特定应用场景下所提出的文件及图像资料处理请求,可在现有 API 结构基础上扩展支持多媒体数据类型的传输协议;同时利用前端框架(如 React 或 Vue.js)构建可视化组件用于接收用户提交的信息条目。此外,考虑到安全性因素的影响,则建议采用 HTTPS 协议加密整个通信链路防止敏感信息泄露风险发生。 ```python from flask import Flask, request, jsonify import os app = Flask(__name__) UPLOAD_FOLDER = './uploads' if not os.path.exists(UPLOAD_FOLDER): os.makedirs(UPLOAD_FOLDER) @app.route('/upload', methods=['POST']) def upload_file(): if 'file' not in request.files: return "No file part", 400 file = request.files['file'] if file.filename == '': return "No selected file", 400 filename = secure_filename(file.filename) filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(filepath) response_data = {"message": f"{filename} has been uploaded successfully."} return jsonify(response_data), 200 ``` 这段 Python 代码展示了如何创建一个简单的 RESTful API 来接受来自用户的文件上传请求,并将其保存到指定目录中去。实际项目开发过程中可根据具体业务逻辑进一步优化和完善该段脚本的功能特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值