贝叶斯网络(机器学习系列,持续更新中~)

本文介绍了机器学习的四个范式,重点讲解了贝叶斯网络在统计学习中的应用。通过贝叶斯公式解决Monty Hall Problem,并探讨了维度的诅咒问题,指出概率图模型如何有效地处理高维数据。文章还提到了有向概率图模型(DAG)的概念,解释了其概率计算方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在说贝叶斯规则(Bayes rule)和将贝叶斯规则用于图模型之前,先让大家了解下机器学习的四个范式(paradigms),也可以理解为四个流派;

  1. 连接主义(connectionist):用现在比较流行的说法就是神经网络,现在用到的工具有Tensorflow、PyTorch、Theano、caffe等~
  2. 符号主义:逻辑的学习,思想严密但计算复杂度很高,从18年开始,在nlp领域上有人开始尝试连接主义和符号主义的联姻~
  3. 统计学习:包括大家很熟悉的SVM,统计学习是基于统计学的原理,通过理论出发实现可靠的模型~目前的困难在于大数据量训练的时候需要一个更为有效的训练方法
  4. 图模型:这个包括我们今天需要学习的贝叶斯网络,还有下一篇文章我将会讲到的HMM(隐形马尔可夫模型)

下图为贝叶斯公式
在这里插入图片描述

Monty Hall Problem上,贝叶斯公式有着很直接的应用,大家可以查看链接并了解下是如何通过贝叶斯公式来解决这个难题的~如果需要更直观的理解这个问题和解法,可以看看这篇博客,问题中每个概率的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值