测试仪器控制

本文详细介绍了仪器控制的概念,包括通过计算机与仪器的通信总线如GPIB、串口、USB、以太网等,以及模块化总线如PCI、PCI Express和PXI。还探讨了仪器驱动程序,如SCPI、VISA和IVI驱动,强调了它们在简化仪器控制和提升测试系统效率中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

     仪器控制是指通过PC上的软件远程控制总线上的一台或多台仪器。 它比单纯的数据采集要复杂的多。它需要将仪器或设备与计算机连接起来协同工作,同时还可以根据需要延伸和拓展仪器的功能。 通过计算机强大的数据处理、分析、显示和存储能力,可以极大的扩充仪器的功能,这就是虚拟仪器的基本含义。

    一个完整的仪器控制系统除了包括计算机和仪器外,还必须建立仪器与计算机的通路以及上层应用程序。通路包括总线和针对不同仪器的驱动程序上层应用程序用于发送控制命令、仪器的控制面板显示以及数据的采集、处理、分析、显示和存储等。

 

     在开发一个测量系统时,选择正确的总线与选择一个具有合适采样速率和分辨率的设备一样重要。 硬件总线可以影响测量的性能、系统搭建时间和便携性等。

     独立总线,用于架式和堆式仪器的通信。独立总线包括T&M专用总线(如GPIB)和PC标准总线(如串行总线RS-232、以太网、USB、无线和IEEE 1394)。一些独立总线可用作其他独立总线的中介,如USB到GPIB的转换器。
? 模块化总线,将接口总线合并到仪器中。模块化总线包括PCI、PCI Express、VXI和PXI。这些总线也可用作为不包括该总线的PC增加一个独立总线的中介,如PCI-GPIB控制卡。

1. GPIB
 通用接口总线(GPIB-General Purpose InterfaceBus)是独立仪器上一种最通用的I/O接口。GPIB是专为测试测量和仪器控制应用设计的。
 GPIB是一种数字的、8位并行通信接口,数据传输速率高达8M字节/秒。该总线可为一个系统控制器提供多达15台仪器连接,连线长度小于20米。
 PC本身很少带有GPIB。实际上,用户通常使用一个插卡(如PCI-GPIB)或一个外部转换器(如GPIBUSB)在自己的PC中增

<think>好的,我现在要处理用户关于Android 12中RKNN开发配置和使用教程的问题。首先,我需要回顾用户提供的引用内容,看看是否有相关的信息。 用户提供了三个引用。引用1提到了RKNN Model Zoo和RKNN Toolkit2的环境配置,包括安装Miniconda3。引用2是关于系统镜像下载,特别是Ubuntu 22.04版本和导出ONNX模型。引用3讨论了RV1808/1126使用RKNN作为MediaPipe推理后端的步骤,包括配置参数如use_rga、use_mmap和data_type的设置,以及反量化的处理。 用户的问题集中在Android 12上,所以需要将引用中的信息与Android系统关联起来。引用3提到了MediaPipe和RKNN的集成,这可能适用于Android开发,但需要确认是否支持Android 12。此外,RKNN Toolkit2的环境配置可能在不同平台上有所不同,用户可能需要针对Android进行调整。 接下来,我需要考虑Android开发中RKNN的一般步骤,比如环境准备、模型转换、集成到Android应用、配置参数和性能优化。结合引用中的信息,模型转换部分可以参考引用2提到的导出ONNX模型,然后使用RKNN Toolkit转换为RKNN格式。引用3中的配置参数(如use_rga、use_mmap、data_type)可能在Android中同样适用,但需要查阅相关文档确认。 可能还需要指导用户如何将RKNN库集成到Android项目中,比如添加依赖项或NDK配置。此外,性能优化方面,引用3提到的反量化处理可能需要特别注意,尤其是在Android设备上的实现。 最后,确保回答结构清晰,分步骤说明,并引用提供的资料。需要验证引用中的信息是否适用于Android 12,例如系统镜像是否支持,或者是否有特定版本的要求。如果某些步骤在引用中没有明确说明,可能需要提示用户参考官方文档或社区资源。</think>### Android 12 RKNN 开发配置与使用教程 #### 1. **环境准备** - **系统镜像与工具链**: 根据引用[2],建议使用Ubuntu 22.04作为开发环境,并下载Orange Pi 5 Pro等支持RKNN的硬件镜像。对于Android 12开发,需确保RKNN Toolkit2适配Android NDK版本(推荐NDK 21+)[^2]。 - **安装RKNN Toolkit2**: 参考引用[1],通过Miniconda3配置Python环境(建议Python 3.8),并安装RKNN Toolkit2以支持模型转换与推理。命令示例: ```bash pip install rknn_toolkit2 ``` #### 2. **模型转换(ONNX转RKNN)** - **导出ONNX模型**: 使用PyTorch或TensorFlow等框架导出模型为ONNX格式(引用[2])。 - **转换为RKNN格式**: 编写RKNN配置文件(`config.yml`),指定输入尺寸、量化方式等参数。示例代码: ```python from rknn.api import RKNN rknn = RKNN() rknn.config(target_platform='rk3568', mean_values=[[127.5]], std_values=[[127.5]]) rknn.load_onnx(model="model.onnx") rknn.build(do_quantization=True, dataset="dataset.txt") rknn.export_rknn("model.rknn") ``` #### 3. **Android项目集成** - **添加RKNN库依赖**: 将编译好的RKNN动态库(`librknnrt.so`)和模型文件(`model.rknn`)放入Android项目的`jniLibs`目录。 - **JNI接口开发**: 通过JNI调用RKNN的C/C++ API实现推理。关键配置参考引用[3]: ```cpp #include <rknn/rknn_runtime.h> rknn_context ctx; int ret = rknn_init(&ctx, model_path, 0, 0, nullptr); ret = rknn_inputs_set(ctx, input_num, input_attrs); ret = rknn_run(ctx, nullptr); ret = rknn_outputs_get(ctx, output_num, output_attrs, nullptr); ``` #### 4. **关键配置参数** - **use_rga与use_mmap**: 根据引用[3],若Android设备不支持硬件加速(如RGA),需将`use_rga`和`use_mmap`设为`false`。 - **数据量化类型**: `data_type`可选`uint8`或`fp32`。若选`uint8`,需手动实现反量化;若选`fp32`,RKNN会自动处理[^3]。 #### 5. **性能优化** - **多线程推理**: 利用Android的`ThreadPoolExecutor`并行处理输入数据。 - **内存优化**: 启用`use_mmap`(若支持)减少内存拷贝开销,或通过零拷贝技术直接操作物理内存。 #### 6. **调试与验证** - **日志输出**: 启用RKNN的调试模式(`RKNN_LOG_LEVEL=DEBUG`)查看详细运行信息。 - **性能分析**: 使用`rknn.query(RKNN_QUERY_PERF_DETAIL)`获取各层耗时,针对性优化模型结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值