混合高斯模型的基本原理,以及通过混合高斯模型进行背景建模的基本思想
混合高斯模型的基本原理
虽然是背景,但是灰度并不是一直保持不变的,灰度是在一个范围内变化的。一个背景像素随着时间变化呈现一定的随机性,但是一段时间内,如果做一个统计的话,其分布在某一个均值,一个方差范围内,绝大多数像素应该落在3σ范围内。图像中每一个像素灰度值随着时间变化的规律符合高斯分布。在实际中,我们发现灰度值的变化往往不能用一个高斯模型刻画,哪能不能用多个高斯模型去刻画呢?这是可以的,任何一种分布函数都可以看作是多个高斯分布的线性加权组合。
如何检测当前图像中某像素属于前景?
I(x,y,t)-μ>3σ
*I(x,y,t)*当前帧像素值,若满足条件则为前景,反之为背景,
那么,为什么GMM的各个高斯分量的系数之和必须为1呢?
其实答案很简单,我们所谓的GMM的定义本质上是一个概率密度函数。而概率密度函数在其作用域内的积分之和必然为1。GMM整体的概率密度函数是由若干个高斯分量的概率密度函数线性叠加而成的,而每一个高斯分量的概率密度函数的积分必然也是1,所以,要想GMM整体的概率密度积分为1,就必须对每一个高斯分量赋予一个其值不大于1的权重,并且权重之和为1。
像素灰度的概率密度函数:
p是概率