Spark基础学习笔记23:DataFrame与Dataset

本文详细介绍了Spark SQL的主要特点,包括无缝结合SQL查询、连接多种数据源和在现有数据仓库上运行SQL查询。重点讲解了DataFrame和Dataset的概念,如何从RDD转换为DataFrame和Dataset,并展示了在Spark SQL中操作DataFrame和Dataset的各种方法,包括投影、过滤、统计、排序等操作,以及如何将数据集转换为数据帧进行SQL查询。文章还提供了基于DataFrame的SQL查询示例和课后作业,帮助读者巩固理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

零、本讲学习目标

  1. 了解Spark SQL的基本概念
  2. 掌握DataFrame的基本概念
  3. 掌握Dataset的基本概念
  4. 会基于DataFrame执行SQL查询

一、Spark SQL

(一)Spark SQL概述

  • Spark SQL是一个用于结构化数据处理的Spark组件。所谓结构化数据,是指具有Schema信息的数据,例如JSONParquetAvroCSV格式的数据。与基础的Spark RDD API不同,Spark SQL提供了对结构化数据的查询和计算接口。

(二)Spark SQL主要特点

1、将SQL查询与Spark应用程序无缝组合

  • Spark SQL允许使用SQL或熟悉的DataFrame API在Spark程序中查询结构化数据。与Hive不同的是,Hive是将SQL翻译成MapReduce作业,底层是基于MapReduce的;而Spark SQL底层使用的是Spark RDD。
  • 在Spark应用程序中嵌入SQ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酒城译痴无心剑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值