华为FusionCompute虚拟化平台

一、华为FusionCompute虚拟化套件介绍

华为FusionCompute虚拟化套件是业界领先的虚拟化解决方案,能够帮助客户带来如下的价值,从而大幅提升数据中心基础设施的效率。

  • 帮助客户提升数据中心基础设施的资源利用率;
  • 帮助客户成倍缩短业务上线周期;
  • 帮助客户成倍降低数据中心能耗;
  • 利用虚拟化基础设施的高可用和强恢复能力,实现业务快速自动化故障恢复,降低数据中心成本和增加系统应用的正常运行时间。

FusionCompute虚拟化套件通过在服务器上部署虚拟化软件,使一台物理服务器可以承担多台服务器的工作。通过整合现有的工作负载并利用剩余的服务器以部署新的应用程序和解决方案,实现较高的整合率。

应用场景:虚拟化场景适用于企业只采用FusionCompute作为统一的操作维护管理平台对整个系统进行操作与维护的应用场景。包含资源监控、资源管理、系统管理等。

  • FusionCompute主要负责硬件资源的虚拟化,以及对虚拟资源、业务资源、用户资源的集中管理。
  • 它采用虚拟计算、虚拟存储、虚拟网络等技术,完成计算资源、存储资源、网络资源的虚拟化。
  • 同时通过统一的接口,对这些虚拟资源进行集中调度和管理,从而降低业务的运行成本,保证系统的安全性和可靠性。

1、FusionCompute产品定位

FusionCompute是云操作系统软件,主要负责硬件资源的虚拟化,以及对虚拟资源、业务资源、用户资源的集中管理。它采用虚拟计算、虚拟存储、虚拟网络等技术,完成计算资源、存储资源、网络资源的虚拟化。

通过统一的接口,对虚拟资源进行集中调度和管理,从而降低业务的运行成本,保证系统的安全性和可靠性,协助运营商和企业构筑安全、绿色、节能的云数据中心能力。

2、FusionCompute在虚拟化套件中位置

  • 云机房:为云数据中心运营所提供的一系列基本配套设施和空间,主要包括供电系统、消防系统、布线系统、制冷系统等。
  • 硬件基础设施层:
    • 硬件资源包括服务器、存储、网络、安全等全面的云计算基础物理设备,支持用户从中小规模到大规模的新建或扩容,可运行从入门级到企业级的各种企业应用。设备类型丰富,可为客户提供灵活的部署选择。
    • 华为分布式块存储(FusionStorage Block)是一种存储与计算高度融合的分布式存储软件,在通用服务器上部署该软件后,可以把所有服务器的本地硬盘组织成一个虚拟存储资源池,提供块存储功能。
  • FusionCompute虚拟化套件:通过在服务器上部署虚拟化软件,将硬件资源虚拟化,从而使一台物理服务器可以承担多台服务器的工作。通过整合现有的工作负载并利用剩余的服务器以部署新的应用程序和解决方案,可以实现较高的整合率。
    • FusionCompute是云操作系统软件,主要负责硬件资源的虚拟化,以及对虚拟资源、业务资源、用户资源的集中管理。它采用虚拟计算、虚拟存储、虚拟网络等技术,完成计算资源、存储资源、网络资源的虚拟化。同时通过统一的接口,对这些虚拟资源进行集中调度和管理,从而降低业务的运行成本,保证系统的安全性和可靠性,协助运营商和企业构筑安全、绿色、节能的云数据中心能力。
    • FusionCompute Pro: 多资源站点统一管理组件,实现不同地域下的多个资源站点统一管理,通过虚拟数据中心(VDC)给不同用户实现资源分域管理能力。
    • eBackup:eBackup是虚拟化备份软件,配合FusionCompute快照功能和CBT(Changed Block Tracking)备份功能实现FusionCompute的虚拟机数据备份方案。
    • UltraVR:容灾业务管理软件,利用底层SAN存储系统提供的异步远程复制特性,提供虚拟机关键数据的数据保护和容灾恢复。

FusionCompute在虚拟化套件中位置

3、FusionCompute产品架构

CNA英文全称:Compute Node Agent,CNA部署在需要虚拟化的服务器上。

VRM英文全称:Virtual Resource Management,VRM可以部署在VM上或者部署在物理服务器上;VRM对外提供网页操作界面给管理维护人员。

### RK3588平台NPU调用方法 #### 创建和初始化NPU环境 为了在RK3588平台上成功调用NPU进行神经网络推理或加速,首先需要确保设备已正确配置并加载了相应的驱动程序。Rockchip的官方固件通常已经预装了RKNPU驱动[^3]。 一旦确认硬件准备就绪,可以通过以下方式创建和初始化NPU环境: ```cpp #include "rknn_api.h" // 初始化模型路径和其他参数 const char* model_path = "./model.rknn"; int ret; rknn_context ctx; ret = rknn_init(&ctx, model_path, 0, 0, NULL); if (ret < 0) { printf("Failed to initialize rknn context\n"); } ``` 这段代码展示了如何使用`rknn_api.h`库来初始化一个RKNN上下文对象,这一步骤对于后续的操作至关重要[^2]。 #### 加载和编译模型 接下来,在实际运行之前还需要加载预先训练好的神经网络模型文件(通常是`.rknn`格式)。此过程涉及读取模型二进制数据,并将其传递给RKNN API以便内部处理和优化。 ```cpp // 假设模型已经被转换成 .rknn 文件格式 char *model_data; // 模型的数据指针 size_t model_size; // 模型大小 FILE *fp = fopen(model_path, "rb+"); fseek(fp, 0L, SEEK_END); model_size = ftell(fp); rewind(fp); model_data = (char *)malloc(sizeof(char)*model_size); fread(model_data, sizeof(unsigned char), model_size, fp); fclose(fp); // 将模型数据传入RKNN API ret = rknn_load_rknn(ctx, &model_data, &model_size); free(model_data); if(ret != 0){ printf("Load Model Failed!\n"); } else{ printf("Model Loaded Successfully.\n"); } ``` 这里说明了从磁盘读取模型文件的具体操作流程,并通过API函数将这些信息提交给了底层框架去解析和设置好用于推断所需的资源[^1]。 #### 执行前向传播计算 当一切准备工作完成后就可以开始真正的预测工作——即让NPU执行一次完整的前向传播运算。这个阶段主要是构建输入张量、启动异步任务以及收集输出结果。 ```cpp float input_tensor[INPUT_SIZE]; // 输入特征图数组 float output_tensors[MAX_OUTPUTS][OUTPUT_SIZE]; // 输出特征图数组 struct rknn_input inputs[] = {{input_tensor}}; struct rknn_output outputs[MAX_OUTPUTS]; for(int i=0;i<NUM_ITERATIONS;++i){ memset(inputs, 0 ,sizeof(struct rknn_input)); memcpy(input_tensor, inputData[i], INPUT_SIZE*sizeof(float)); // 启动推理任务 ret = rknn_run(ctx, nullptr); if(ret!=0){ printf("Inference failed at iteration %d", i); break; } // 获取输出结果 for(size_t j=0;j<num_outputs;++j){ struct rknn_output& out = outputs[j]; size_t bufSize = OUTPUT_SIZE * sizeof(float); void* buffer = malloc(bufSize); ret = rknn_get_output(ctx, j, &out.datatype, &buffer, &bufSize, false); if(!ret && buffer){ memcpy(output_tensors[j], buffer, bufSize); free(buffer); } } } printf("All iterations completed successfully."); ``` 上述片段体现了典型的基于RKNN SDK的应用场景:先准备好待测样本作为输入;接着触发内核中的计算逻辑;最后获取到经过变换后的响应值供下一步分析所用[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

休耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值