【Python 项目】照片马赛克 - 1

照片马赛克是一张图像,它被分割成长方形的网格,每个长方形由另一张匹配“目标”的图像(最终希望出现在照片马赛克中的图像)替代。换言之,如果从远处看照片马赛克,会看到目标图像;但如果走近,会看到该图像实际上包含许多较小的图像。这个迷题有解是因为人眼的工作方式。下图中的低分辨率块状图像,靠近了很难识别,但如果从远处看,就知道它代表什么,因为看到的细节较少,就使得边缘越光滑。照片马赛克的原理是相似的。从远处看,图像看起来正常,但走近时,秘密揭开了:每“块”都是一个独特的图像!
在这里插入图片描述

开始

本项目中,我们将学习如何用 Python 创建照片马赛克。我们将目标图像划分成较小图像的网格,并用适当的图像替换网格中的每一小块,创建原始图像的照片马赛克。你可以指定网格的尺寸,并选择输入图像是否可以在马赛克中重复使用。

在这个项目中,你将学习如何做到以下几点:

  • 用 Python 图像库(PIL)创建图像;
  • 计算图像的平均 RGB 值;
  • 剪切图像;
  • 通过粘贴另一张图像来替代原图像的一部分;
  • 利用平均距离测量来比较 RGB 值。

工作原理

要创建照片马赛克,就从目标图像的块状低分辨率版本开始(因为在高分辨率的图像中,小块图像的数量会太大)。该图像的分辨率将决定马赛克的维度 M×N(M 是行数,N 是列数)。接着,根据这种方法替换原始图像中的每一小块:

  1. 读入一些小块图像,它们将取代原始图像中的小块;
  2. 读入目标图像,将它分割成 M×N 的小块网格;
  3. 对于每个小块,从输入的小块图像中找到最佳匹配;
  4. 将选择的输入图像安排在 M×N 的网格中,创建最终的照片马赛克。

分割目标图像

按照下图中的方案,开始将目标图像划分成 M×N 的网格。
在这里插入图片描述
图像展示了如何将原始图像分割成小块的网格。 x 轴表示网格的列,y 轴表示网格的行。

现在,看看如何计算网格中一个小块的坐标。下标为(i,j)的小块,左上角坐标为 (iw, ij),右下角坐标为((i+1)*w, (j+1)*h),其中 w 和 h 分别是小块的宽度和高度。PIL 可以用这些数据,从原图像创建小块。

平均颜色值

图像中的每个像素都有颜色,由它的红、绿、蓝值来表示。在这个例子中,使用 8 位的图像,因此每个部分有 8 位值,范围在[0,255]。如果一幅图像共有 N 个像素,平均 RGB 计算如下:
r , g , b { r 1 + r 2 + . . . + r n N , g 1 + g 2 + . . . + g n N , b 1 + b 2 + . . . + b n N } r,g,b \left\{\begin{aligned} \end{aligned} \right.\frac{r_1+r_2+...+r_n} {N}, \frac{g_1+g_2+...+g_n}{N}, \frac{b_1+b_2+...+b_n}{N}\left.\begin{aligned} \end{aligned}\right\} r,g,b{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QuantumStack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值