目录
批量归一化
监控训练过程
优化超参数
批量归一化
在训练过程中,每一层的输入分布总是变来变去,我们希望它能稳定成高斯分布,所以在全连接层或是卷积层之后进行批量归一化的操作,使得每一层的激活分布固定下来。首先计算每一维度的均值和方差,之后进行归一化。

在卷积层后面进行批量归一化的时候,不仅对训练数据进行批量归一化,对feature map也将进行这一操作。

对于tanh这种激活函数,我们需要控制饱和的程度,不是非要给tanh function输入一单位高斯数据,有时候有一点饱和也是允许的,所以,又引入了两个参数……γ用来缩放,β用来平移。

批量归一化总结: