2019/6/8CS231n课程笔记(批量归一化、监控训练过程、优化超参数)

目录

 

批量归一化

监控训练过程

优化超参数


批量归一化

在训练过程中,每一层的输入分布总是变来变去,我们希望它能稳定成高斯分布,所以在全连接层或是卷积层之后进行批量归一化的操作,使得每一层的激活分布固定下来。首先计算每一维度的均值和方差,之后进行归一化。

在卷积层后面进行批量归一化的时候,不仅对训练数据进行批量归一化,对feature map也将进行这一操作。

对于tanh这种激活函数,我们需要控制饱和的程度,不是非要给tanh function输入一单位高斯数据,有时候有一点饱和也是允许的,所以,又引入了两个参数……γ用来缩放,β用来平移。

批量归一化总结:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值