自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 【无标题】

摘要:操作系统多路复用I/O技术是解决高并发连接(C10K问题)的关键,主要有select、poll和epoll三种实现方式。select采用轮询机制,有1024连接数限制;poll改进为链表存储,取消数量限制但仍有性能瓶颈;epoll通过事件驱动和红黑树优化,实现O(1)时间复杂度,成为Linux高并发最优解。面试需掌握三者区别:select小并发跨平台,poll中等并发灵活,epoll适合Linux高并发场景。技术选型还需考虑Windows的IOCP和Linux 5.1+的io_uring等方案。

2025-06-25 10:28:34 407

原创 【大模型】【机器学习】【面试宝典】

深度学习面试热点科普:BatchNorm和LayerNorm的区别 这两种归一化技术的主要差异在于: 计算维度不同:BatchNorm在batch维度归一化同类特征,LayerNorm在样本内部归一化所有特征 Batch依赖性:BatchNorm需要足够大的batch size而LayerNorm不需要 适用场景:BatchNorm更适合CNN图像处理,LayerNorm适用于NLP任务 推理稳定性:LayerNorm更适合在线推理场景 面试回答要点:BatchNorm对batch内同特征归一化,Layer

2025-06-24 15:04:37 300

原创 【面试宝典】【大模型基础】【机器学习】

GPT与BERT是NLP领域两大明星模型,核心区别在于:BERT采用双向编码结构,适合理解型任务(如分类、问答),通过"填空"方式训练;GPT采用单向生成结构,擅长生成型任务(如写作、对话),通过"续写"方式训练。简单记:BERT理解文本,GPT生成文本。面试时结合具体应用场景(如BERT做情感分析,GPT写邮件)和项目经验更加分。两者都是基于Transformer架构,但设计目标和应用方向完全不同。

2025-06-24 10:13:43 376

原创 【面试宝典】【大模型入门】【模型微调】

摘要: 监督微调与无监督微调是预训练模型适配下游任务的两种方法。监督微调使用标注数据优化特定任务能力(如分类),依赖人工标注;无监督微调通过自监督学习(如MLM)适应新领域语料,无需标签。前者强化任务性能,后者提升领域适应性,通常可结合使用:先无监督迁移领域,再监督微调任务。典型场景如BERT先在知乎语料无监督微调,再用标注数据做情感分析监督微调。(145字)

2025-06-20 11:01:35 434

原创 【AI 入门】激活函数的特征与区别

深度学习中的激活函数引入非线性,增强模型表达能力。ReLU最常用(计算简单、收敛快),但易出现神经元死亡;LeakyReLU可缓解此问题;Sigmoid/Tanh易梯度消失,多用于输出层;GELU/Swish平滑性更强,适合大模型但计算稍复杂。选择激活函数需平衡性能与计算效率。

2025-06-17 14:54:29 715

原创 【Transformer 入门】【大模型入门】【注意力机制】

摘要:Transformer和BERT是NLP面试中的高频考点。Transformer是2017年提出的基于Self-Attention的架构,包含Encoder和Decoder,适合翻译等序列任务。BERT则是2018年基于Transformer Encoder构建的预训练模型,采用双向建模,主要用于文本理解任务。两者关键区别在于:Transformer是完整架构,BERT是其变体;Transformer用于生成任务,BERT侧重理解任务。面试速记:Transformer是架构,BERT是基于其Encod

2025-06-17 10:42:15 388

原创 机器学习 深度学习 面试宝典

机器学习与深度学习的关键区别:机器学习依赖人工特征工程,适合小数据、解释性强的场景(如风控、推荐系统);深度学习通过神经网络自动提取特征,需要大量数据和算力,擅长图像、语音等复杂任务(如CV/NLP)。两者并非取代关系,而是互补:传统算法在结构化数据中仍是SOTA,而深度学习的优势在于处理非结构化数据。面试时可强调二者的适用场景差异,而非简单回答包含关系。

2025-06-16 10:37:15 308

原创 【后端开发】TCP vs UDP 的区别

摘要: TCP和UDP是传输层两大核心协议,主要区别在于连接方式和可靠性。TCP面向连接,提供可靠传输(如HTTP、文件传输),通过三次握手建立连接,保证数据不丢不重;UDP无连接,传输速度快但可能丢包(如视频会议、游戏),适合低延迟场景。关键差异总结为:TCP稳定可靠但开销大,UDP快速轻量但不保送达。面试回答时可结合应用场景(如"视频用UDP求快,网页用TCP求稳"),并提及QUIC等UDP优化方案。掌握这些对比要点,轻松应对网络协议面试题! (149字)

2025-06-13 10:52:17 363

原创 【计算机网络】HTTP vs HTTPS 一次讲清!

5分钟掌握HTTP与HTTPS核心差异|面试必备知识点 HTTP是明文传输的网页通信协议(端口80),数据裸奔易被窃听篡改;HTTPS则是HTTP+TLS/SSL加密的安全版本(端口443),通过加密传输和身份认证保护数据安全。关键区别在于:HTTPS需要数字证书、消耗稍多性能但提供加密、防篡改和认证功能。现代Web开发中,HTTPS已成为公网服务的标配,不仅能防范中间人攻击,还能获得搜索引擎权重加成。面试回答时强调HTTPS的三重保障:机密性、完整性和身份验证。

2025-06-11 10:49:27 343

原创 【操作系统】进程 vs 线程

摘要:进程是资源分配的最小单位,代表一个运行中的程序,拥有独立内存空间;线程是CPU调度的最小单位,属于进程内部的执行单元,共享进程资源。进程更稳定但开销大,线程更高效但存在共享风险。典型区别体现在内存、通信方式和崩溃影响等方面,应用场景也不同(进程适合多任务,线程适合并发处理)。面试中需掌握二者的核心区别和适用场景。

2025-06-10 10:53:26 239

原创 【数据结构】平衡二叉树 红黑树 和 B+树 的区别

数据结构三剑客AVL树、红黑树和B+树的核心差异:AVL树严格平衡,查询快但维护成本高,适合查多改少场景;红黑树平衡性稍弱但插入删除效率高,适合频繁读写;B+树多叉结构、叶子节点存数据且形成链表,特别适合范围查询和磁盘存储,是数据库索引的首选。三者各有优势,适用场景不同:AVL用于内存高查频率,红黑树用于高并发读写,B+树用于外存和数据库。

2025-06-06 11:29:15 446

原创 HTTP 与 RPC 有啥区别?

是一种基于文本的网络传输协议,通常用于浏览器和服务器之间的数据通信。🌰 举个例子:你在浏览器输入,就是通过 HTTP 向百度服务器发起请求,拿到网页数据。协议:基于 TCP格式:明文传输(可以搭配 HTTPS 实现加密)常用工具:浏览器、Postman、curl、前端 AjaxRPC(Remote Procedure Call,远程过程调用)是一种调用远程服务的协议,让你像调用本地函数一样调用远程服务函数。🌰 举个例子:你写 Java 代码调用。

2025-06-04 23:34:00 641

原创 【操作系统】同步 / 异步 & 阻塞 / 非阻塞 到底是啥?

摘要:本文清晰区分了同步/异步与阻塞/非阻塞的概念。同步指必须等待结果返回才能继续,异步则是立即返回通过回调获取结果;阻塞会挂起线程等待,非阻塞可处理其他任务。通过生活类比和四种组合方式的举例(如同步阻塞像占线等待,异步非阻塞像点外卖自动通知),帮助理解这些高并发编程的基础概念。文末还提供面试速答模板,指出这些组合方式决定了程序效率和资源使用,是现代系统设计的重要考量。

2025-05-29 10:37:29 357

原创 【面经热点】【后台开发】正向/反向代理是什么?

正向代理(Forward Proxy)是指客户端通过一个中间代理服务器访问目标服务器。你→代理→目标网站🎯科学上网(翻墙访问 Google)屏蔽内网用户访问某些网站缓存加速、日志记录等🌰 举个栗子:你公司网络禁止访问 Twitter,但你通过一个代理服务器,成功访问了它——这个代理服务器就是正向代理!反向代理(Reverse Proxy)是指用户访问的是代理服务器,而代理服务器再去找后端真实服务器获取数据并返回。用户→代理→多个服务节点🎯负载均衡动静分离安全防护(隐藏真实 IP)

2025-05-26 22:49:01 295

原创 【AI闪卡】【面经热点】MCP(model context protocol)是什么

MCP(Model Context Protocol,模型上下文协议)是由 Anthropic 提出的 AI 通用接口标准,旨在为 AI 提供统一的通信协议,使其能够无缝连接各种外部工具(如浏览器、数据库、代码库等),直接执行现实世界中的任务。MCP 解决了 AI 信息孤岛和依赖编程的短板,通过 AI 管家(Host)、跑腿小哥(Client)和工具仓库(Server)三大核心组成,实现多轮调用、状态感知和自主协作。与传统 API 和 Function Call 相比,MCP 具备更高的灵活性和智能化,能够

2025-05-17 22:17:37 623

原创 【后端开发】【面试专题】消息队列专题 爆杀面试官

大家好,我是正在准备 Java 后端开发面试的小文。本期给大家带来消息队列面试专题。

2025-03-19 13:20:15 815

原创 【深入理解java八股】String为什么是不可变的?我们在代码中要如何使用String

【深入理解JAVA八股】 我们的口号是带着问题去学习 带着思考去背书 本文详解String为什么是不可变的 对我们日常使用String又有什么启发

2025-02-28 20:46:08 484

原创 力扣 快速排序 (循环不变量思想解析)

快排是我们非常熟悉的算法,但里面有比较复杂的循环和递归其中不变量的分析是手撕代码的关键,本文在代码基础上,会对其中涉及到的复杂变量做**循环不变量分析**,帮助大家彻底掌握代码手撕

2025-01-06 14:16:18 273

原创 hot100 力扣 编辑距离总结

编辑距离(Edit Distance)是指将一个字符串转换为另一个字符串所需的最少操作次数。可以操作的包括以下三种:插入一个字符删除一个字符替换一个字符编辑距离在字符串相似度分析、拼写检查、基因序列比对等领域有广泛应用。

2025-01-02 15:34:27 634

原创 虚拟环境配置常见bug (venv conda)

虚拟环境是为了解决不同项目对与环境变量和依赖包版本的冲突问题而设计的一种结构。它充分别离与系统环境,保证同一台机器上不同项目运行随时不同版本和参数。举例:你一个开发者同时使用 Django 2.x 和 Django 3.x 完全不同的版本,需要通过虚拟环境保持两者的独立性。

2024-12-30 16:07:00 1699

原创 # 二分查找代码详解(面试手撕代码)

先说结论 left 是队列中仅大于target的 right是队列中仅小于target的左边必然是比target小的 右边必然是比target大的若right被赋值为mid-1;直接退出 此时 left是仅大值 right是仅小值若left被赋值为mid+1 left和right重合进入上述判断。

2024-12-19 13:39:46 746

原创 前端更新记录

文件上传的时候无法进行覆盖,只能单次选择。

2023-11-17 17:12:11 50

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除