计算机视觉方面的三大国际会议是ICCV, CVPR和ECCV

本文介绍了计算机视觉领域的三大会议。ICCV全称International Comference on Computer Vision,两年一次,级别最高,举办地遍布全球;CVPR全称Internaltional Conference on Computer Vision and Pattern Recogintion,一年一次,举办地均在美国;ECCV全称Europeon Conference on Computer Vision,是欧洲会议,注重理论,现也开始注重应用,但交流时因口音问题稍费劲。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自计算机视觉论坛。

ICCV的全称是International Comference on Computer Vision,正如很多和他一样的名字的会议一行,这样最朴实的名字的会议,通常也是这方面最nb的会议。ICCV两年一次,与ECCV正好错开,是公认的三个会议中级别最高的。它的举办地方会在世界各地选,上次是在北京,下次在巴西,2009在日本。iccv上的文章看起来一般都比较好懂,我是比较喜欢的。

“ICCV”是“International Conference on Computer Vision”的简称。该会议由美国电气和电子工程师学会(IEEE,Institute of Electrical & Electronic Engineers)主办,通常是在北美、欧洲、亚洲的一些科研实力较强的国家举行。作为世界顶级的学术会议,首届国际计算机视觉大会于1987年在伦敦揭幕,其后两年举办一届。 [1]  
计算机视觉是当前计算机科学研究的一个非常活跃的领域,该学科旨在为计算机和机器人开发出具有与人类水平相当的视觉能力。各国学者对于计算机视觉的研究始于20世纪60年代初,但相关基础研究的大部分重要进展则是在80年代以后取得的。近年来,全球学界愈来愈关注中国人在计算机视觉领域所取得的科研成就,这是因为由中国人主导的相关研究已取得了长足的进步——2007年大会共收到论文1200余篇,而获选论文仅为244篇,其中来自中国大陆,香港及台湾的论文有超过30篇,超过大会获选论文总数的12%。
会议收录论文的内容包括:底层视觉与感知,颜色、 光照纹理处理, 分割与聚合, 运动跟踪立体视觉与运动结构重构,基于图像的建模,基于物理的建模,视觉中的统计学习, 视频监控,物体、事件和场景的识别,基于视觉的 图形学,图片和视频的获取,性能评估,具体应用等。
ICCV是计算机视觉领域最高级别的会议,会议的论文集代表了计算机视觉领域最新的发展方向和水平。会议的 收录率较低,以 2007 年为例,会议共收到论文1200余篇,接受的论文仅为244篇。会议的论文会被 EI 检索。


CVPR的全称是Internaltional Conference on Computer Vision and Pattern Recogintion。这是一个一年一次的会议,举办地从来没有出过美国,因此想去美国旅游的同学不要错过。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。

国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是 ICCVECCV),近年来每年有约1500名参加者,收录的论文数量一般300篇左右。第一届CVPR会议于1985年在旧金山举办,后面每年都在美国本土举行。
近几年录取率25%左右,自2001年开始每年在会议上进行演讲的论文[oral]通过率锐减为10%以下,2006年这一数字以来更是低于5%(一个重要原因是由于论文数量过多,大部分的6~8页长篇论文在会议期间只要求做海报[poster]展示)。在各种学术会议统计中,cvpr被认为有着很强的影响因子和很高的排名。


ECCV的全称是Europeon Conference on Computer Vision,是一个欧洲的会议。虽然名字不是International,但是会议的级别不比前面两个差多少。欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会有一个不好,就是他们的人通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。

ECCV的全称是European Conference on Computer Vision(欧洲计算机视觉国际会议) ,两年一次,是计算机视觉三大会议(另外两个是ICCV和CVPR)之一。每次会议在全球范围录用论文300篇左右,主要的录用论文都来自美国、欧洲等顶尖实验室及研究所,中国大陆的论文数量一般在10-20篇之间。ECCV2010的论文录取率为27%。
ECCV是一个欧洲会议,欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会有一个不好,就是他们的人通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。


总的来说,以上三个会议是做计算机视觉人必须关注的会议,建议每一期的oral都要精读,poster调自己相关的仔细看看。如果有好的进一步的想法,可以马上发表,因为他们已经是最新的了,对他们的改进通常也是最新的。同时如果你做了类似的工作,却没有引用这些会议的文章,很有可能会被人指出综述部分的问题,因为评审的人一般都是牛人,对这三个会议也会很关注的。
### 高光谱图像分类算法在顶级会议中的最新研究 #### ICCVCVPR ECCV 上的高光谱图像分类进展 近年来,在计算机视觉领域的重要会议上,关于高光谱图像(HSI)分类的研究取得了显著进步。这些研究成果不仅推动了理论发展,还在实际应用方面展现了巨大潜力。 #### 数据融合技术的应用 多模态数据融合成为提高HSI分类性能的关键策略之一。例如,在自动驾驶场景下,为了可靠地检测不同距离的目标物体,现代LiDAR传感器能够覆盖数百米范围内的环境[^3]。这种远距离感知能力使得远处的小型目标物在图像中显得更小,而早期网络层提取到的信息对于识别这类小型目标尤为重要。这表明结合来自多个源的数据可以增强模型对复杂场景的理解力适应性。 #### 新兴方法技术趋势 一些新兴的方法专注于解决特定挑战,比如处理具有相似颜色分布的对象时的传统光学成像局限性。针对这一问题提出的多光谱最近点算法(MS-CPA),虽然在大多数情况下有效,但对于那些与背景或其他前景元素色彩接近的情况下表现不佳[^4]。因此,研究人员正在探索更多创新性的解决方案来克服此类难题。 尽管上述引用主要集中在其他主题上,但它们反映了当前学术界关注的方向——即如何利用先进的计算工具应对复杂的现实世界任务。值得注意的是,在ECCV 2020期间也有关于超分辨率重建的工作被提及,这部分工作间接支持了更高精度遥感影像获取的需求,从而促进了后续基于精细结构特征分析的任务开展,如精准农业监测等领域内高光谱数据分析需求的增长[^1]。 然而,具体到ICCVCVPR以及ECCV这三个国际顶尖会议上直接讨论高光谱图像分类的文章列表并未在此提供完整的概述;建议查阅各次会议官方出版物以获得最权威的第一手资料。 ```python # Python代码示例:用于展示如何查询相关论文数据库(伪代码) def search_papers(keywords, conferences=['ICCV', 'CVPR', 'ECCV']): results = [] for conference in conferences: query = f"{conference} AND ({' OR '.join(keywords)})" papers = database.search(query) results.extend(papers) return sorted(results, key=lambda p: p['year'], reverse=True) keywords = ["hyperspectral", "image classification"] papers_found = search_papers(keywords) for paper in papers_found[:5]: print(f"- {paper.title}, published at {paper.conference}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值