本文重点
上一节课程中我们学会了损失函数在数学上的定义,为了让大家对损失函数有更加深入的了解,本节课中我们将通过一些例子来帮助大家更加直观的感受损失函数。
我们先来回顾一下上节课程中讲解的内容:
我们想要找一条直线hθ(x)来拟合我们的数据,所以我们用θ0和θ1参数来得到我们的假设。而且不同的参数θ0和θ1得到的直线hθ(x)是不一样的。为了让这条直线和我们的数据拟合的非常好,我们引入了损失函数,损失函数就是我们的优化目标,当损失函数最小的时候,此时θ0和θ1构成的模型就是最好的直线hθ(x)了。
不同的θ值
为了达到简化的目的,我们令θ0=0,此时假设函数为hθ(x)=θ1x,现在的任务是最小化损失函数:
现在我们的假设函数是hθ(x)=θ1x,它是关于特征x的函数,θ1是该直线的斜率,θ1不同hθ(x)就会不同。
我们现在的数据集可视化如下所示&