每天五分钟机器学习:线性回归算法模型的损失函数的直观理解

本文通过实例和可视化方法,深入浅出地解释了线性回归中损失函数的作用,强调了损失函数作为优化目标的重要性。通过改变θ1的值,观察损失函数J(θ1)的变化,说明当损失函数最小化时,对应θ1的模型是最佳拟合数据的直线,从而确定最佳模型参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文重点

上一节课程中我们学会了损失函数在数学上的定义,为了让大家对损失函数有更加深入的了解,本节课中我们将通过一些例子来帮助大家更加直观的感受损失函数。

我们先来回顾一下上节课程中讲解的内容:在这里插入图片描述

我们想要找一条直线hθ(x)来拟合我们的数据,所以我们用θ0和θ1参数来得到我们的假设。而且不同的参数θ0和θ1得到的直线hθ(x)是不一样的。为了让这条直线和我们的数据拟合的非常好,我们引入了损失函数,损失函数就是我们的优化目标,当损失函数最小的时候,此时θ0和θ1构成的模型就是最好的直线hθ(x)了。

不同的θ值

为了达到简化的目的,我们令θ0=0,此时假设函数为hθ(x)=θ1x,现在的任务是最小化损失函数:在这里插入图片描述

现在我们的假设函数是hθ(x)=θ1x,它是关于特征x的函数,θ1是该直线的斜率,θ1不同hθ(x)就会不同。

我们现在的数据集可视化如下所示&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值