本文重点
在机器学习和数据科学领域,评估模型的性能是至关重要的一步。其中,AUC(Area Under the Curve)值是一种广泛使用的评估指标,它可以有效地衡量分类模型的性能。在前面的课程中,我们学习了ROC曲线,基于ROC曲线可以很快速的获取AUC值。
AUC 值的概念
AUC 值即曲线下面积,通常是指接受者操作特征曲线(Receiver Operating Characteristic Curve,简称 ROC 曲线)下的面积。
AUC 值的取值范围在 0 到 1 之间。AUC 值越接近 1,表示分类器的性能越好;AUC 值越接近 0.5,表示分类器的性能与随机猜测相当;AUC 值小于 0.5 时,表示分类器的性能比随机猜测还差,但这种情况在实际应用中比较少见。
计算 AUC 值的方法
1. 几何法
几何法是一种直观的计算 AUC 值的方法。由于 AUC 值是 ROC 曲线下的面积,可以将 ROC 曲线下的区域划分为多个小梯形,然后计算这些小梯形的面积之和,即可得到 AUC 值。
具体步骤如下:
(1)首先,根据分类器的预测结果,计算不同阈值下的真正例率(TPR)和假正例率(FPR)。
(2)将这些点按照 FPR 的升序排列。
(3)对于相邻的两个点(FPR₁, TPR₁)