人工智能之数学基础:线性变换的象空间和零空间

本文重点

前面的课程中,我们学习了线性变换,由此而引申出线性变换的象空间和零空间,这两个空间在机器学习领域会被经常用到,本文对此进行学习。

直观理解

总的来说象空间就是经过线性变换得到的空间,零空间就是经过线性变换是零的元素构成的空间。

从几何角度来看,象空间描述了线性变换T如何将V中的向量映射到W中的某个子空间中;而零空间则描述了V中哪些向量在T的作用下会“消失”(即被映射到零向量)。这两个空间共同揭示了线性变换T的结构和性质。

象空间

定义:

象空间,也称为值域(Range),是指线性变换T作用下,所有可能的输出向量组成的向量空间。对于给定的线性变换T:V→W,其中V是定义域向量空间,W是目标向量空间,T的象空间是所有T(v)(v∈V)的线性组合生成的向量子空间,记为Im(T)或R(T)。

性质:

象空间是W的一个子空间。

对于V中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天五分钟玩转人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值